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Development and Application of Environmentally 
Friendly Intelligent Transportation System (ECO-ITS) 
Freight Strategies 

EXECUTIVE SUMMARY 

Over the last several years, many studies have shown the promise of intelligent transportation 
systems (ITS) technologies in reducing the energy consumption and environmental footprint of 
people and goods movement through various means. This research is aimed at developing and 
evaluating eco-friendly ITS strategies for freight vehicles and traffic, with a focus on strategies 
that are applicable to the transportation systems in the South Coast Air Basin. Four specific 
strategies are examined in this research, including: 1) connected eco-driving, 2) truck eco-
routing, 3) integrated traffic control, and 4) intelligent parking assist. The description of the 
evaluation of each strategy and key findings are summarized below. 

Connected Truck Eco-Driving 

Eco-approach and departure (EAD) at signalized intersections has been shown to be one of the 
most effective connected vehicle applications for energy savings and emission reductions. It 
uses signal phase and timing (SPaT) information from the upcoming traffic signal along with the 
information about the state of the host vehicle and preceding traffic to determine the best 
course of action for the vehicle to pass through the intersection. Research and development of 
EAD applications had been focused on passenger cars, and it was only recently that EAD was 
applied to heavy-duty trucks. Nevertheless, most of the research on EAD for heavy-duty trucks 
to date has primarily been conducted in numerical or traffic simulation environment. In this 
project, the research team designed and evaluated user interfaces of an EAD system in a heavy-
duty truck driving simulator. Then, we implemented the promising user interface design in an 
actual truck EAD system and conducted an evaluation of its effectiveness in real world. 

The EAD user interface designs that were evaluated include the audio-only interface and the 
audio & visual interface. Results from the driving experiment show that in general, the audio & 
visual interface results in a similar or higher level of reduction in travel time, fuel consumption, 
as well as CO2, NOx, and PM2.5 emissions than the audio-only interface. Surveys were also 
conducted of the truck drivers who participated in the driving experiment. According to the 
survey results, a majority of the drivers thinks that both the SPaT information and the advisory 
speed are very useful or extremely useful. It is also clear that most drivers would prefer the 
audio & visual interface and that they would always use the truck EAD system with this type of 
user interface if it is available on their trucks. Based on these findings and the superior 
performance of the audio & visual interface in the driving experiment, the research team 
implemented this user interface on a truck EAD system, called “Eco-Drive”, for a real-world 
evaluation on two connected corridors in Carson, California. 
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The results from the real-world performance evaluation show that driving with Eco-Drive 
resulted in less fuel consumption than driving without it by 6% to 15%, but the underlying 
reasons for which the fuel savings were achieved varied by corridor. On the Alameda St 
corridor, Eco-Drive helped the driver better comply with the speed limit of the road. This 
helped reduce speed fluctuations around the cruising speed, leading to improvements in fuel 
efficiency and potentially traffic safety. On the Wilmington Ave corridor, Eco-Drive helped cut 
down number of stops at connected intersections considerably, resulting in not only fuel 
savings but also travel time savings. 

It should be noted that during the data collection the truck was not pulling any load (i.e., 
bobtailing). It is expected that Eco-Drive would provide a higher level of fuel savings than 
observed in this evaluation if the truck pulls a load, especially a heavy one. It is recommended 
that the effectiveness of Eco-Drive be also evaluated under those conditions in future work. In 
addition, it is recommended that the potential traffic safety benefits of Eco-Drive be studied in 
more depth as part of future research. Although the data collected in this project provide 
anecdotal evidence that the truck driver better complied with the speed limit of the road when 
driving with Eco-Drive, more data from additional drivers should be collected to verify whether 
Eco-Drive also improves traffic safety in addition to climate and air quality. 

Truck Eco-Routing 

Over the last decade, there has been much research and development on new routing 
techniques for navigation systems. These include eco-routing that is aimed at finding the route 
that would minimize vehicle energy consumption and/or emissions for the trip. To date, most 
of the research and development of eco-routing has been focused on passenger cars. Although 
there have been some research studies that apply eco-routing to heavy-duty trucks, they are 
based on hypothetical trips that may not be representative of the typical operations of truck 
fleets. Thus, it is not possible to assess how often and how much truck drivers or fleet operators 
could benefit from eco-routing in their typical operations. Therefore, in this project the 
research team applied eco-routing to the real-world truck operation data of a regional 
distribution fleet in Inland Southern California to determine the eco route for each trip, and 
then compared trip metrics of the eco route with those of the fastest route to evaluate the fuel 
savings potential from eco-routing. 

Based on the results of 456 trips made by 48 trucks in a typical day, it was found that for 52% of 
the trips the fastest route is already the most fuel-efficient route. These trips tend to be very 
short, less than 3 miles on average, and may not have more than one realistic route option to 
begin with. For another 23% of the trips, the eco route would take up to one minute (1% to 8%) 
longer travel time than the fastest route on average, but would result in 5% to 7% fuel savings. 
This would be considered attractive from the fuel savings versus travel time increase tradeoff 
perspective. For another 11% of the trips, the eco route would take up to 3.5 minutes (12% to 
17%) longer travel time on average, but would result in 7% to 8% fuel savings, which could still 
be considered to be acceptable. In other words, there is potential for truck eco-routing to help 
the trucks in this analysis save fuel (and reduce CO2 emission) on about a third of their trips. 
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The choice of travel route is usually made by truck drivers or fleet operators, and the primary 
metric for making that route choice decision is travel time. In this research, it is demonstrated 
that the eco route for any given trip can very well be different from the fastest route. By 
providing additional route options and the corresponding travel costs to the drivers, they can 
consider the tradeoff among the routes and make a choice with regards to which route to take 
based on their preferences and circumstances. For example, the eco route may be chosen if it 
would still allow the truck to arrive at the destination within a specified time window, while the 
fastest route may be preferred if the truck needs to meet a stringent delivery schedule. Even if 
the drivers take the eco route in some of their trips, it could still contribute to significant fuel 
savings and CO2 emission reductions, which are beneficial to the drivers and fleet operators as 
well as to the society. Thus, it is recommended that eco-routing be promoted or incentivized 
for use among truck drivers and fleet operators. 

Integrated Traffic Control Strategies 

This chapter aims to develop traffic flow control strategies that elevate traffic congestion near 
highway bottleneck locations as well as improve traffic mobility and reduce vehicle emissions. 
Highway traffic congestion is detrimental to traffic mobility, safety, and the environment. An 
effective and cost-efficient solution to mitigate traffic congestion, especially at highway 
bottlenecks, is through Intelligent Transportation Systems (ITS), such as variable speed limit 
(VSL), lane change (LC) control, ramp metering (RM), and many others. An integrated control 
design of VSL, LC, and RM for highway traffic is expected to smooth highway traffic flow, 
resulting in improving traffic mobility, increasing safety, and enhancing environmental 
sustainability. In this project, we developed a coordinated variable speed limit (VSL), ramp 
metering (RM), and lane change (LC) control, which stabilizes the bottleneck flow at the 
maximum possible level and while enhancing safety and reducing vehicle emissions. 

First, we demonstrated that one of the primary reasons for the disordered traffic flow behavior 
near highway bottlenecks is the forced lane changes at the vicinity of the bottleneck. A lane 
change controller is proposed, which provides lane change recommendations to upstream 
vehicles to avoid creating a queue. Two types of variable speed limit controllers are designed to 
improve the flow rate at highway bottleneck together with the lane change controller. The 
combined lane change and feedback-linearization variable speed limit controller, built based on 
the first-order macroscopic Cell Transmission Model (CTM), can analytically guarantee the 
global exponential convergence to the desired equilibrium point at which the maximum 
possible flow rate is achieved. Then the combined LC and VSL controller is extended to 
coordinate with ramp metering controllers. The coordinated VSL, RM, and LC control scheme is 
able to improve system performance, maintain the queue length on-ramps, and keep the 
fairness between mainline and on-ramp flows. Microscopic simulations show consistent 
improvement under different traffic demands and scenarios. 

Second, the proposed controller is compared to the widely used Model Predictive Control 
(MPC) strategy. Both macroscopic and microscopic simulations show that the performance and 
robustness with respect to model parameter errors and measurement noise of our proposed 
controller (feedback-linearization VSL) are better than that of the MPC controller. Furthermore, 
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we modify the CTM to include the effect of capacity drop and the decreasing discharging flow 
of the road section and rigorously investigate its stability properties under all possible traffic 
flow scenarios. The analysis is used to motivate the design of variable speed limit control to 
overcome capacity drop without lane change control and achieve the maximum possible flow 
under all feasible traffic situations. 

Finally, we also consider the case where the system disturbance is included and extend the VSL 
control design by adding the integral action in order to reject the disturbance while avoiding 
the capacity drop. Microscopic simulations based on the commercial software VISSIM are used 
to demonstrate the effectiveness of the proposed robust VSL controller and associated benefits 
for traffic scenarios along a large segment of I-710 in Southern California. 

 Intelligent Parking Assist System 

This chapter developed methods to integrate parking availability information into the planning 
process for long-haul trucking and studied truck parking shortages’ potential impacts on the 
industry. First, we studied the truck driver scheduling problem (TDSP), which considers a fixed 
route and aims to determine a minimum duration regulation-compliant schedule. We proposed 
a mixed integer programming formulation that uses conditioned time-window constraints to 
model the parking availability at parking facilities and moving window constraints to model the 
hours-of-service (HOS) constraints for long trips. Simulation results illustrate that schedules 
calculated without accounting for parking availability are often infeasible. Although parking 
constraints increased trip duration in some scenarios, these scenarios also showed lower 
feasibility rates when ignoring parking information. 

We followed by extending the TDSP under parking availability constraints to include path 
planning. We proposed a resource-constrained shortest path formulation that uses a resource 
vector to keep track of the HOS and time constraints. The problem is solver over an auxiliary 
network that explicitly models the different activities available to drivers and how they affect 
each regulation constraint. We proposed a tailored label-correcting algorithm that solves the 
problem to optimality. Computational experiments showed that parking conditions could 
significantly affect the route choice, illustrating the importance of accounting for parking 
availability information early in the planning process. We also simulated the potential costs of 
disregarding parking information under different parking shortage severity levels and how they 
compare to the cost increase caused by imposing parking restrictions. The results vary greatly 
depending on the available routes’ quality, the parking shortage severity, and the expected cost 
of illegal parking. The results underline the importance of including parking information as early 
as possible to increase the quantity and quality of available routes and schedules. In addition, it 
also elicits the importance of further research on estimating the potential costs and risks of 
illegal truck parking. 

Finally, we extended the resource-constrained shortest path formulation to the case of battery-
electric trucks (BETs). We studied the impact of coordinating rest and recharge needs on BETs’ 
performance and its comparison to diesel trucks. Computational experiments were used to 
estimate the effects of different levels of charging and parking infrastructure. Although BETs 
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generate only a small fraction of diesel trucks’ CO2 emissions, BETs require longer trip 
durations in most scenarios. However, this gap in trip duration depends on battery capacity, 
charging infrastructure (power of regular and fast chargers), and parking/charging facilities’ 
availability (regular chargers’ time-windows, and fast chargers number and wait time). A 
common concern regarding the utilization of BETs for long-haul trucking is the infrastructure 
required to quickly charge large batteries, reducing the disparity to diesel trucks’ refueling time. 
Nevertheless, our experiments show that, although fast-chargers can significantly reduce trip 
duration in many scenarios, trip duration is even more sensitive to the power and availability of 
the regular chargers used for long (overnight) rests. It is important to note that these results do 
not mean that fast chargers are without benefit. The advantages of particular infrastructure 
decisions will vary for each case. Our experiments only illustrate that, while trying to have BETs 
operating in similar itineraries to current diesel trucks (e.g., using fast chargers to reduce 
recharging time) might be the instinctive way to approach truck electrification, it is not the only 
one. It is likely not the best approach either. 

In this project, we exposed the importance of using truck parking availability information during 
planning, and proposed methods to do so. Besides helping individual truck drivers with trip 
planning, the methods developed in this project can simulate different scenarios and aid 
policymakers in estimating the impacts of infrastructure investment decisions. 
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Introduction 

Heavy-duty diesel trucks (HDDTs), the majority of which are used for goods movement, are 
significant contributors of nitrogen oxides (NOx) and particulate matter (PM) emissions in many 
regions of the U.S. such as the South Coast Air Basin in California (South Coast Air Quality 
Management District, 2017). As a result, communities close to freight hubs such as ports, 
railyards, and distribution centers often experience elevated levels of these pollutant emissions 
(Brunekreef et al., 1997; Kozawa et al., 2009). Studies have shown strong evidence of the health 
damage associated with diesel-related air pollution (Reis et al., 2018; Robinson et al., 2018; 
Wilson et al., 2018). In recent years, more regulatory attention and investment have been 
directed toward disadvantaged communities (DACs), such as those heavily impacted by air 
pollution associated with goods movement, in order to improve the health, quality of life, and 
economic opportunities of their residents (De León, 2012; Gomez, 2016; Garcia, 2017). 

In addition, HDDTs represent the second largest share of the nation’s transportation energy 
use, which contributes significantly to greenhouse gas emissions from transportation (U.S. 
Energy Information Administration, 2020). From 2007 to 2017, the share of energy used by 
medium and heavy vehicles grew from 19.5% of the transportation sector total to 24.4% (Davis 
et al., 2010; Davis and Boundy, 2020). In general, truck traffic has been growing nationwide, 
especially in urban areas, as a result of increased freight demand spurred by international trade 
and e-commerce. Vehicle miles traveled of freight trucks are expected to increase from 300 
billion miles in 2019 to 415 billion miles in 2050 (U.S. Energy Information Administration, 2020). 
This will put a lot of pressure on the roadway infrastructure, potentially leading to increased 
traffic congestion, energy consumption, and emissions. Thus, innovative solutions are needed 
to address the growing freight demand that outpace the rate of expansion in supporting 
infrastructure. 

 

Figure 1. Energy use by mode of transportation in the U.S. in 2007 (Davis et al., 2010) 
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Figure 2. Energy use by mode of transportation in the U.S. in 2017 (Davis and Boundy, 2020) 

In the last few decades, efforts to reduce HDDT emissions and their health impacts have been 
focused on imposing increasingly stringent emissions standards (California Air Resources Board, 
2008). This has led to significant advancements in emission control technologies (Jiang et al., 
2018) and alternative fuel vehicle technologies (McCaffery et al., 2021). While these 
technologies are effective at reducing emissions from HDDTs, the turnover of the existing HDDT 
population to these advanced technologies would require a large amount of investment and a 
long time. In the near term, other efforts to reduce emissions of the existing HDDTs and 
mitigate their impacts on communities are needed. 

Over the last several years, many studies have shown the promise of intelligent transportation 
systems (ITS) technologies in reducing the energy consumption and environmental footprint of 
people and goods movement through various means, such as more energy-efficient driving 
(Barth and Boriboonsomsin, 2009; Boriboonsomsin, 2015; Huang et al., 2018) and choosing 
environmentally friendly travel route (Boriboonsomsin et al., 2012; Scora et al., 2015; Wang et 
al., 2019a). This research is aimed at developing and evaluating eco-friendly ITS strategies for 
freight vehicles and traffic, with a focus on strategies that are applicable to the transportation 
systems in the South Coast Air Basin. Four specific strategies are examined in this research, 
including: 1) connected truck eco-driving, 2) truck eco-routing, 3) integrated traffic control, and 
4) intelligent parking assist. The details of the development and evaluation of each strategy are 
given in the individual chapters that follow. 

This research is a joint effort between researchers from the University of California at Riverside 
(UCR), who are responsible for the connected eco-driving and truck eco-routing strategies, and 
researchers from the University of Southern California (USC), who are responsible for the 
integrated traffic control and intelligent parking assist strategies.   
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Connected Truck Eco-Driving 

Introduction 

Background 

Located in the South Coast Air Basin, the Ports of Los Angeles and Long Beach are the busiest 
port complex in the U.S. and the ninth busiest port complex in the world by container volume. 
Together, they handle over 40% of all U.S. international containerized cargo. Although the two 
ports provide significant contribution toward economic growth and vitality for communities in 
the South Coast Air Basin, port-related goods movement operations and traffic are also 
responsible for a large portion of criteria pollutants and greenhouse gases in the region, with 
disproportionate impacts on communities adjacent to the ports and along major goods 
movement corridors. While progress has been made in reducing port truck-related emissions 
through fleet turnover (Bishop et al., 2012), more emission reductions from these trucks are 
needed in order to attain air quality and climate goals. 

It was estimated that the Ports of Los Angeles and Long Beach generated about 63,000 truck 
trips per day in 2018, the majority of which were made by HDDTs. Unlike long-haul trucks, 
these port trucks or drayage trucks spend a large amount of time traveling on arterial corridors 
with traffic signals. Thus, they often experience traffic congestion and delays at signalized 
intersections. These delays result in inefficiencies in the form of increased travel time, fuel use, 
and emissions. 

The recent advance in Connected Vehicle (CV) technology has brought forward new 
opportunities to enhance mobility, energy efficiency, and sustainability of people and goods 
movement via information sharing and better cooperation through vehicle-to-vehicle and 
vehicle-to-infrastructure communications. Pilot CV applications include cooperative adaptive 
cruise control (Milanés et al., 2014), cooperative lane change (Luo et al., 2016), cooperative 
ramp merging (Xie et al., 2017), and many eco-friendly CV applications initialized in the 
USDOT’s Applications for the Environment: Real-Time Information Synthesis (AERIS) research 
program (U.S. Department of Transportation, 2014), such as eco-traffic signal timing, eco-traffic 
signal priority, and eco-speed harmonization. 

Related Work 

Among all those CV applications, connected eco-driving such as eco-approach and departure 
(EAD) at signalized intersections has been shown to be one of the most effective CV 
applications for energy savings and emission reductions. The EAD application uses signal phase 
and timing (SPaT) information from the upcoming traffic signal along with the information 
about the state of the host vehicle and preceding traffic to determine the best course of action 
for the host vehicle to pass through the intersection. Possible scenarios as shown in Figure 3 
include: 1) cruising through the green light; 2) speeding up (while staying under the speed limit) 
to pass through the intersection before the signal turn red; 3) slowing down in advance so that 
the vehicle reaches the intersection just when the signal turns green; and 4) coasting to a stop if 
the red light is unavoidable. 
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Figure 3. Scenarios when driving through an intersection with traffic signal 

Once the application has determined the best course of action, it then designs a driving speed 
profile that would minimize fuel consumption and delay, and provides the recommended 
driving speed to the driver. Previous studies have shown that with a well-designed speed 
profile, the host vehicle would travel through the intersection in a way that reduces the number 
of stops as well as unnecessary acceleration and deceleration, which results in energy savings 
and emission reductions, while maintaining a similar travel time (Xia et al., 2013; Altan et al., 
2017; Hao et al., 2019). 

As most of the eco-friendly CV applications to date have been developed for passenger cars, 
less attention has been given to similar applications for heavy-duty trucks [Boriboonsomsin, 
2015; European Commission, 2021; Lesage, 2013]. Borek et al. (2020) developed a truck 
optimal control model in highway environment with an offline dynamic programming 
optimization module along with an online model predictive control module, showing 3.7%–
8.3% fuel savings without traffic and 6.5%–10% savings with traffic. Hao et al. (2021) designed 
an EAD algorithm for HDDTs that also accounts for road grade along the travel path, which was 
shown through numerical simulations to provide average fuel savings of 11% for level terrain, 
6% for uphill, and 20% for downhill. On the other hand, numerical simulations of a dynamic 
programming-based EAD algorithm for heavy-duty trucks developed by Rodriguez and Fathy 
(2018) showed 32-72% fuel savings on different arterial corridor configurations. In Wang et al. 
(2019b), the researchers implemented an EAD system on a HDDT and demonstrated its 
performance in real-world traffic on urban freight corridors in Carson, California.  
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Research Objectives 

Most of the research on EAD for heavy-duty trucks to date have primarily been conducted in 
numerical or traffic simulation environment. While there has been a demonstration of EAD 
system for heavy-duty trucks (Wang et al., 2019b), there has yet to be a systematic evaluation 
of the efficacy of the EAD application in real-world settings. And unlike numerical or traffic 
simulation studies, real-world studies of the EAD application require an actual implementation 
of EAD system on the vehicle. The system will include a user interface for providing information 
or driving recommendation to the driver. The user interface needs to be carefully designed to 
be user friendly and effective. 

Therefore, there are two objectives for this portion of the research project: 1) to design and 
evaluate user interfaces for an EAD system that will be suitable for use on heavy-duty trucks, 
and 2) to implement the EAD system on a heavy-duty truck and conduct a systematic 
evaluation of its effectiveness in the real world. 

User Interface Design and Evaluation 

User Interface Design 

The UCR research team designed a user interface for an EAD system in a previous research (Hao 
et al., 2019). The design was implemented on a 7-inch display for a real-world experiment of 
the system with a passenger car traveling on a connected corridor in the Bay Area. This user 
interface includes multiple features: 

• Speedometer with advisory speed 

• Engine speed (RPM) tachometer 

• Traffic signal graphic indicating real-time SPaT 

• Distance bar with real-time vehicle location in relative to the upcoming intersection 

• Signal strength indicators for the dedicated short-range communication (DSRC) and 
global positioning system (GPS) receivers  

• Radar detection indicator (i.e., indicating if a preceding vehicle was within the radar 
detection range)  

• Distance from the preceding vehicle within the radar detection range  

As shown in Figure 4, the advisory speed is only displayed when there is no preceding vehicle 
detected. If a preceding vehicle is detected, the advisory speed will not be given while the radar 
detection indicator along with the distance from it will appear instead. The logic for such design 
is that when there is a preceding vehicle within a close distance, the speed of the host vehicle 
will be primarily governed by the speed of the preceding vehicle. Also, under such situation the 
driver of the host vehicle should focus more on following the preceding vehicle safely. 
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Figure 4. Visual interface of UCR’s EAD system used in real-world experiment with passenger 
car (Hao et al., 2019) 

In this project, the UCR research team redesigned the user interface with inputs from truck 
drivers and truck fleet owners. The goal of the new designs is to provide traffic signal 
information and driving recommendation to the driver in a simple and clear manner so that the 
driver can drive through signalized intersections smoothly, reducing vehicle energy 
consumption and emissions. In the redesign process, we reached out and scheduled meeting 
with truck drivers and truck fleet owners. At the meetings, we presented them a mock-up video 
of how the existing design works, and solicited their inputs. Key inputs that we received are 
listed below: 

• [Driver] Consider making it also available on smartphones. This will be useful for trucks 
without an existing display on them. 

• [Driver] Adding the option to orient the user interface vertically similar to commonly 
used driving navigation apps (e.g., Google Maps). Some drivers are more familiar with 
vertical orientation. 

• [Driver] RPM tachometer is not important as there is one on the trucks already. 

• [Driver] Distance from the preceding vehicle is not important as the driver can see the 
preceding vehicle. 

• [Fleet owner] Consider audio interface instead of visual in order to keep the driver’s 
eyes on the road. 
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Based on the inputs received, we redesigned the visual interface of the EAD system specifically 
for heavy-duty trucks. Most of the features were carried over from the previous design. The 
changes in the new design include adding the option to orient the user interface vertically (see 
Figure 5), removing the RPM tachometer, removing the distance from the preceding vehicle 
information, changing the host vehicle graphic from car to truck, and adding the cross street 
name of the upcoming intersection. 

 

Figure 5. Visual interface of UCR’s truck EAD system designed in this project 

In addition, we designed a new audio interface for the truck EAD system. The flowchart of the 
audio interface is presented in Figure 6. This audio interface is only activated when the vehicle 
is within 200 meters from the intersection, which is far enough for the driver to perceive the 
SPaT information provided by the truck EAD system, process it, make decision, and take any 
necessary action. Depending on the traveling speed, the amount of time to traverse the 200 
meters will range from 10 seconds at 45 mph to 22 seconds at 20 mph. When the vehicle is 
more than 200 meters away from the intersection, the SPaT information provided may not be 
highly relevant and the audio message could be deemed distractive. 
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Figure 6. Flowchart of the audio interface of UCR’s truck EAD system 

 

Passable 
with current 

speed?

Call from 
the next 
phase?

“X seconds 
to yellow”

N Y

Y N

No Message

Stop 
already?

“At most K 
seconds to 

green”

N N

Y Y

TTC 
determined

?

N

Y

TTC 
determined

?

TTC = X?
Y

N

No Message No Message

No Message

DTI <= 200 
meters?

Current 
phase is 
green?

Y

N
No Message

Current 
phase is 

red?

Y

Y

N

N

No Message
“X seconds 
to green”

TTC = X?
Y

N

No Message

Start

DTI = Distance-to-intersection
TTC = Time-to-change of signal phase
X = 20, 10, and 5 seconds
K depends on signal timing plan



 9 

The green, red, and yellow bounding boxes in Figure 6 represent the decisions that the truck 
EAD system will make when the current phase of the upcoming traffic sign is green, red, and 
yellow, respectively. Note that this flowchart is designed for traffic signals with actuated 
control, which do not always know the precise time-to-change from the current signal phase to 
the next phase. That is why one of the audio messages is “At most K seconds to green” where K 
depends on the signal timing plan. For traffic signals with fixed time control, the answer to the 
questions “Call from the next phase?” and “TTC determined?” will be yes. 

In designing the audio interface, the research team opted for messages that provide SPaT 
information rather than driving recommendation. This is because a driving recommendation 
such as an advisory speed is determined based on multiple factors (e.g., distance-to-
intersection, driving speed, SPaT, etc.) at that point in time, and it can change if the 
circumstance changes. Unlike visual interface, it would be difficult for the driver to follow the 
advisory speed provided through audio messages every few seconds. And providing changing or 
conflicting recommendations to the driver could undermine the credibility of the system. Thus, 
it was deemed that providing SPaT information to the driver and let the driver use that 
information to support his or her decision on how best to pass through the upcoming 
intersection would be more useful. 

In providing the SPaT information, the research team opted to provide as few audio messages 
as necessary. Too many audio messages could be distractive, especially if they are irrelevant 
such as when the vehicle is still far away from the intersection. Therefore, instead of a constant 
count down of the remaining time in the current signal phase, we designed the system to only 
provide audio message when the vehicle is within 200 meters from the intersections and there 
are 20, 10, and 5 seconds left in the current phase. Under these circumstances, the information 
is highly relevant and could impact the driver’s decision on what action to take. 

With the redesigned visual interface and the newly developed audio interface, the research 
team set up an experiment in a truck driving simulator to evaluate the effectiveness of different 
user interface configurations. Given the resources available in this project, only two 
configurations could be evaluated. The two configurations were: 

1. Audio-only interface – This configuration was based on the desire to limit driver’s 
distraction. It would also make the installation of the system easier as there is no need 
to mount a display on the vehicle. 

2. Audio & visual interface – This configuration was motivated by the desire to make more 
information available to the driver. As opposed to the visual-only interface that requires 
the driver to look at the display to receive information, this configuration allows the 
driver more flexibility on what information to receive and how to receive them. For 
example, drivers who do not wish to receive an advisory speed can still receive the SPaT 
information through audio messages without having to glance at the display. 



 10 

Truck Driving Simulator 

The evaluation of the two user interface configurations was conducted in a state-of-the art 
truck driving simulator, called MinisimTM. It is a sophisticated computer-based driving simulator 
that consists of multiple displays, instrument panel, and high-quality steering wheel and pedals 
built into a system the size of a quarter cab of a truck. As shown in Figure 7, the simulator’s 
visual graphics are displayed on three 42’’ plasma screens, and there is a separate LCD screen 
immediately below that replicates the instrument panel on a truck. The simulator conveys 
sound (e.g., engine noise, horn) through a 2.1 audio system. The driver uses an adjustable 
steering wheel, gas and brake pedals, and gear shift lever (8 gears) when he or she drives in the 
simulator, the same way as driving in a real truck. 

 

Figure 7. MinisimTM truck driving simulator at UCR 

The simulator comes with several software tools including Tile Mosaic Tool (TMT) and 
Interactive Scenario Authoring Tool (ISAT) that are used to create driving scenarios. TMT allows 
roadmaps to be built using a database of premade tiles. ISAT uses the roadmap built in TMT 
and places objects and coordinators on it. The objects include static ones, such as signs and 
obstacles, as well as Autonomous Dynamic Objects (ADOs) and Dependent Dynamic Objects 
(DDOs), such as vehicles. ADOs can be simply placed on a roadmap, and will drive 
autonomously while obeying preset controls, including lane deviation, maximum and minimum 
speed, acceleration, and gap between vehicles. DDOs require a designated path, and will not 
move unless given a set of nodes to travel to on the roadmap. Coordinators, including traffic 
signals, global time triggers, and road pads, provide a way to control large groups of ADOs. On 
the other hand, DDOs are not affected by coordinators. Once a driving scenario has been 
created and the external driver has been given a spawn point on the roadmap, the scenario can 
be run by MinisimTM. 

In this project, the truck EAD system was integrated with the truck driving simulator as a 
parallel system that interfaces with MinisimTM in real time. As shown in Figure 8, a data 
acquisition and processing computer is connected to the truck driving simulator. It collects real-
time vehicle, traffic, and SPaT information from the simulator, and uses them to determine 
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driving recommendation. The SPaT information and driving recommendation are then 
conveyed to the driver through the artificial dashboard. In this project, the artificial dashboard 
is a 7-inch tablet that serves as both visual and audio interfaces of the truck EAD system. That 
is, the audio messages from the truck EAD system are provided through the tablet’s speaker as 
opposed to the driving simulator’s audio system. This is a realistic representation of how the 
truck EAD system will be set up in the real world. 

 

Figure 8. Integration of truck EAD system with truck driving simulator 

Driving Scenarios 

The driving scenarios in the truck driving simulator were designed to consist of a series of 
intersections that form a rectangular virtual test track with the speed limit of 40 mph 
throughout. Each of the long sides of the virtual test track consists of 17 intersections. The 
distance between two consecutive intersections is 500 meters. The traffic signals are set to be 
fixed time control with the cycle length, green time, yellow time, and red time being 60, 30, 3, 
and 27 seconds, respectively. 

On one of the long sides of the virtual test track (i.e., 17 intersections), there is no other vehicle, 
while there is traffic with other vehicles around on the other long side. The former represents 
the scenario where the truck is the lead vehicle in the traffic stream that approaches the 
intersections, while the latter represents the scenario where the truck is a following vehicle. To 
complete one round of driving experiment, the driver will drive through a total of 34 
intersections that make up various combinations of whether the truck is the lead or a following 
vehicle, current signal phase, remaining phase time, etc. Figure 9 shows an example scenario 
where the truck was the lead vehicle approaching an intersection when the traffic signal was in 
red phase. 
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Figure 9. Example driving scenario in the truck driving simulator 

Experimental Procedure 

Once the truck driving simulator was set up and the driving scenarios programmed, truck 
drivers in the local area were recruited to take part in the driving experiment. The experiment 
consisted of several steps as described below. 

1. Pre-Survey – First, the participants were asked to fill out a pre-survey. This survey 
contains questions about their typical trucking operations and how useful the different 
information and driving recommendation that can be provided by the truck EAD system 
would be to them. A copy of the pre-survey in both English and Spanish is provided in 
Appendix A. 

2. Introduction to Driving Simulator – The participants were introduced to the truck driving 
simulator, and given a chance to test drive it using a sample driving scenario that comes 
with the simulator (not the ones developed in this project). They would practice driving 
the simulator until they felt comfortable with it. 

3. Baseline Driving – The participants were asked to drive the driving scenario developed in 
this project in a way that they would normally drive in real life. 

4. Introduction to Truck EAD System – The participants were introduced to the truck EAD 
system and both of its user interface configurations. The participants were explained 
about all the features on the user interface. Then, they were given a chance to try the 
truck EAD system in another test drive using a sample driving scenario that comes with 
the simulator (not the ones developed in this project). 
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5. Driving with Truck EAD System – The participants were asked to drive the driving 
scenarios developed in this project with the use of the truck EAD system. They would 
drive two rounds, one with the audio-only configuration and the other with the audio & 
visual configuration. The order of which configuration was used first would alternate. 
That is, one participant would drive with the audio-only configuration first. Then, the 
next participant would drive with the audio & visual configuration first. 

6. Post-Survey – Lastly, the participants were asked to fill out a post-survey. This survey 
contains questions about their opinion of the truck EAD system and some basic 
demographics. A copy of the post-survey in both English and Spanish is provided in 
Appendix B. 

Data Collection and Processing 

Driving data were automatically recorded through the MinisimTM DAQ (Data Acquisition) tool. 
Several parameters such as truck speed, position, engine speed, etc., were recorded at the 
frequency of 60 Hz. The data were aggregated into 1 Hz, and the truck speed data were then 
used to calculate the corresponding acceleration/deceleration rates. 

Since the truck driving simulator does not have a real truck engine, truck fuel consumption was 
estimated using fuel consumption rate data from the U.S. Environmental Protection Agency’s 
Motor Vehicle Emission Simulator (MOVES) model (U.S. Environmental Protection Agency, 
2015) for a 2009 model year HDDT, which is the most common model year of heavy-duty trucks 
serving the Port of Los Angeles in 2018 (Port of Los Angeles, 2018). The estimation was based 
on the second-by-second speed and acceleration data of the driving as captured by the 
simulator. MOVES defines 23 different operating mode (OpMode) bins for a vehicle in 
operation based on its second-by-second speed and vehicle specific power (VSP), as shown in 
Figure 10. Each OpMode bin is associated with a fuel consumption or emission rate. Figure 11 
shows the fuel consumption rates by OpMode bin for the truck assumed in this project. In 
addition to fuel consumption, several types of emissions were also estimated using emission 
rate data from the MOVES model. These include carbon dioxide (CO2), carbon monoxide (CO), 
hydrocarbons (HC), oxides of nitrogen (NOX), and fine particulate matter (PM2.5). Of particular 
interest are NOX and PM2.5, which are major pollutants generated by diesel engines. 

Driving Results 

The research team was able to recruit 15 truck drivers to participate in the experiment. During 
the experiment for one driver, the equipment broke down, impacting the collected data. Thus, 
the data for this driver was excluded from subsequent analyses. The driving data for the other 
14 drivers were applied to the MOVES model to estimate the associated fuel consumption and 
emissions. Table 1 shows the differences in travel time, fuel consumption, and emissions when 
using the audio-only interface as compared to the baseline. On average, the audio-only 
interface results in reductions in travel time, fuel, NOx, and PM2.5 by 10%, 2%, 4%, and 1% 
respectively. Table 2 shows the differences when using the audio & visual interface as 
compared to the baseline. On average, travel time, fuel, NOx, and PM2.5 are reduced by 10%, 
4%, 5%, and 2% respectively.  
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Figure 10. Definition of vehicle operating mode bins in MOVES model 

 

Figure 11. Fuel consumption rate of 2009 model year heavy-duty diesel truck 
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Table 1. Differences in driving metrics for the audio-only interface compared to baseline 

Driver Time Fuel CO2 NOx PM2.5 CO HC 

001 -12% 5% 5% 2% 7% -4% -11% 

002 -15% -2% -2% -5% 0% -4% -14% 

003 -5% 1% 1% -1% 3% -4% -7% 

004 -22% -6% -7% -10% -5% -10% -18% 

005 16% 8% 7% 9% 2% 11% 17% 

006 -10% -4% -4% -5% -1% -7% -13% 

007* - - - - - - - 

008 -9% 4% 4% 1% 5% 0% -8% 

009 1% 0% 0% 0% -1% 0% 4% 

010 -21% -11% -11% -13% -11% -7% -15% 

011 -24% 3% 4% -2% 6% -10% -22% 

012 -8% -6% -6% -7% -7% -7% -5% 

013 -33% -8% -8% -14% -6% -16% -27% 

014 13% -11% -11% -6% -10% 2% 11% 

016 -7% 6% 5% 2% 9% -8% -12% 

Avg. -10% -2% -2% -4% -1% -5% -9% 
*Data impacted by equipment failure during the experiment 

Table 2. Differences in driving metrics for the audio & visual interface compared to baseline 

Driver Time Fuel CO2 NOx PM2.5 CO HC 

001 -6% -7% -7% -6% -6% -4% -2% 

002 -9% -6% -6% -7% -4% -1% -7% 

003 -2% -1% -1% -1% 1% -5% -4% 

004 -19% -3% -3% -6% -1% -6% -19% 

005 -1% -2% -2% -1% -3% 4% 0% 

006 -10% -13% -13% -12% -9% -8% -10% 

007* - - - - - - - 

008 -15% 4% 4% 0% 6% -8% -14% 

009 -6% -4% -4% -4% -2% -6% -3% 

010 -10% -11% -11% -11% -10% -7% -6% 

011 -21% -1% -1% -5% 0% -8% -15% 

012 -22% -12% -12% -15% -12% -14% -18% 

013 -21% -4% -4% -8% -2% -8% -16% 

014 6% 1% 1% 2% 2% 2% 3% 

016 8% 7% 7% 6% 10% 1% -3% 

Avg. -10% -4% -4% -5% -2% -5% -8% 
*Data impacted by equipment failure during the experiment 
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The driving speed profiles, in terms of speed vs. distance, of one of the participants are presented in Figure 12. The first half of the 
driving is where there was no other vehicle around. The second half is where other vehicles might present, which made the speed 
profiles more fluctuated. In general, the driver rarely needed to come to a full stop at any of the intersections. However, the truck 
EAD system was able to help the driver avoid slowing down significantly at some intersections, especially during the first half of the 
driving.  

 

Figure 12. Speed profiles of Driver #006 

We also further analyzed the data by differenciating between the first half and the second half of the driving. The results in terms of 
percent differences in travel time, fuel consumption, and emissions as compared to the baseline are shown in Figure 13 and Figure 
14 for the audio-only configuration and the audio & visual configuration, respectively. These results represent the average values of 
the 14 drivers whose driving data are complete. 

In general, the audio & visual configuration results in a similar or higher level of reduction in almost all the metrics. When the truck 
was the lead vehicle with no other preceding vehicle, the truck EAD system results in a higher level of reduction in fuel consumption 
as well as CO2, NOx, and PM emissions. On the other hand, the truck EAD system provides a higher level of reduction in travel time 
as well as CO and HC emissions when there were other vehicles present. These trends are true for both the audio-only and the audio 
& visual configurations. 
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Figure 13. Differences in time, fuel, and emissions for the audio-only interface 

 

Figure 14. Differences in time, fuel, and emissions for the audio & visual interface 
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Survey Results 

As part of the experiment, we asked the participants to fill out surveys before and after the 
driving. There are a total of seven questions in the “before” survey and eight questions in the 
“after” survey. We analyzed the survey responses, which are presented in Figure 15 through 
Figure 24. Highlights from these figures are summarized below: 

• More than half of the participants spend over 40% of their driving jobs on surface 
streets with traffic signals. 

• Over 90% of the participants think that it is very useful or extremely useful to know how 
many seconds are left before the traffic signal will change from green to yellow. 

• About 75% of the participants think that it is very useful or extremely useful to know 
how many seconds are left before the traffic signal will change from red to green when 
approaching a red light. However, if already stopped at a red light, only about 45% think 
that such information is very or extremely useful. 

• 60% of the participants thinks that a device that can recommend what speed they 
should be driving at in order to pass through the intersection on green is very useful or 
extremely useful. 

• 87% of the participants thinks that a device that can recommend them to slow down 
ahead of time because it knows that they will not be able to pass through the 
intersection on green is very useful or extremely useful. 

• 60% of the participants would prefer to use the audio & visual version of the truck EAD 
system while 33% would prefer to use the audio-only version. The other 7% would use 
either version. 

• About 75% of the participants would always use the audio & visual version of Eco-Drive 
when driving on surface streets with traffic signals if it is already equipped on their 
trucks. This number drops to about 45% for the audio-only version.  

Note that the truck driver participants were recruited from the local area. They primarily 
perform drayage operation or regional distribution, and thus, it is not surprising that over 40% 
of their driving jobs are on surface streets. Out of the 15 drivers, one is female and the rest are 
male. The age of these drivers ranges from 29 years old to 64 years old, with an average of 44 
years old. Their professional driving experience ranges from 1.5 years to 43 years, with an 
average of 15 years. 

According to the survey results, it is encouraging to find that a majority of the drivers thinks 
that both the SPaT information and the advisory speed are very useful or extremely useful. It is 
also clear that most drivers would prefer the audio & visual configuration and that they would 
always use the truck EAD system with this configuration of the user interface if it is available on 
their trucks. Based on these findings and the superior performance of the audio & visual 
configuration, we implemented this configuration of the truck EAD system for a real-world 
evaluation that is described in the next section. 
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Figure 15. Distribution of responses to Question # 1 in the pre-survey 

 

Figure 16. Distribution of responses to Question # 2 in the pre-survey 
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Figure 17. Distribution of responses to Question # 3 in the pre-survey 

 

Figure 18. Distribution of responses to Question # 4 in the pre-survey 
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Figure 19. Distribution of responses to Question # 5 in the pre-survey 

 

Figure 20. Distribution of responses to Question # 6 in the pre-survey 
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Figure 21. Distribution of responses to Question # 7 in the pre-survey 

 

Figure 22. Distribution of responses to Question # 1 in the post-survey 
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Figure 23. Distribution of responses to Question # 2 in the post-survey 

 

Figure 24. Distribution of responses to Question # 3 in the post-survey  
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Real-World Implementation of Truck EAD System 

To enable the truck EAD system in the real world, the research team developed and 
implemented a series of hardware and software for both the vehicle and the roadway 
infrastructure (i.e., traffic signals). These development and implementation efforts were made 
with support from California Energy Commission (CEC), California Air Resource Board (CARB), 
South Coast Air Quality Management District (SCAQMD), Port of Los Angeles (POLA), Los 
Angeles County Metropolitan Transportation Authority (LA Metro), Los Angeles County’s 
Department of Public Work (LADPW), City of Carson, City of Los Angeles’ Department of 
Transportation (LADOT), Econolite, McCain, Western System, and Volvo Technology of America. 

On the roadway infrastructure side, the research team worked with POLA, LA Metro, LADPW, 
City of Carson, and LADOT to deploy 15 connected signalized intersections nearby the San 
Pedro port complex to support a variety of connected vehicle applications. The 15 connected 
signalized intersections are located on three urban freight corridors, which carry a high volume 
of truck traffic: 1) Alameda St, 2) S. Wilmington Ave, and 3) W. Harry Bridges Blvd, as shown in 
Figure 25. On each of the corridors, five signalized intersections were chosen and enabled to 
send real-time SPaT data to the Traffic Signal Information System (TSIS) server at UCR. 

 

Figure 25. Connected signalized corridors near San Pedro port complex 

For the five connected intersections on W. Harry Bridges Blvd, real-time SPaT data are obtained 
from the Traffic Management Center (TMC) of LADOT. On the other hand, the connectivity of 
the 10 connected intersections on Alameda St and S. Wilmington Ave is enabled by 4G/LTE 
modem where real-time SPaT data is sent to the TSIS server at UCR via cellular communication. 
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Figure 26 shows the instrumented hardware inside the traffic signal controller cabinet at one of 
the intersections. The router mounted in the cabinet is a rugged, industrial-graded router that 
can withstand temperature of up to 160 degree Fahrenheit. After connecting to the traffic 
signal controller, the cellular modem forwards SPaT messages from the traffic signal controller 
to the TSIS server over the 4G/LTE cellular network. The level of latency varies, but is usually 
around 1-2 seconds, which is acceptable for the truck EAD system. 

 

Figure 26. Instrumented communication devices in traffic signal controller cabinet 

On the vehicle side, the hardware consists of an Android tablet and a Mobileye camera installed 
as shown in Figure 27. The Android tablet houses the EAD software application called Eco-Drive. 
The tablet also comes equipped with a GPS receiver and a cellular (4G/LTE) modem, allowing it 
to communicate with the TSIS server. The Mobileye camera is used to detect the presence of 
preceding vehicles and send the detection information directly to the Eco-Drive application. 

Figure 28 presents the components and data flow of the cellular-based Eco-Drive application. 
The flow of SPaT data from the connected intersections to the connected truck is represented 
by arrows K and H. The TSIS server hosts a digital map of the connected signalized corridors and 
the EAD algorithm for calculating the advisory speed. The TSIS server uses the digital map, 
along with the global positioning system (GPS) data of the truck location from the tablet 
onboard the truck (arrow A), to identify the upcoming intersection, estimate the distance to the 
intersection, and determine the speed limit of the road before returning the results to the 
tablet to be displayed (arrow F). At the same time, the EAD algorithm takes the vehicle speed 
data from the GPS (arrow B), the distance-to-intersection result from the map (arrow E), and 
the SPaT information of the upcoming intersection (arrow G) to calculate the recommended 
driving speed for the connected truck, which is then sent to the tablet (arrow I). The Eco-Drive 
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application running on the tablet then displays the information received from all the sources on 
the driver-vehicle interface or user interface. 

The real-world implementation of the truck EAD system was conducted in conjunction with the 
“The Port of Los Angeles Eco-FRATIS Drayage Truck Efficiency Project” led by the City of Los 
Angeles Harbor Department. More details about the instrumentation of the connected 
corridors, the development of Eco-Drive and TSIS server, and the implementation of EAD 
algorithm can be found in (City of Los Angeles Harbor Department, 2021). 

 

Figure 27. On-board hardware of UCR’s truck EAD system 
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Figure 28. Components and data flow of cellular-based truck EAD system 
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In addition to the truck EAD system, we also installed a combined GPS and engine control unit 
(ECU) data logger on the truck (see Figure 29) to collect its real-world vehicle and engine 
operation data at the frequency of 1 Hz. The data collected by this data logger include GPS 
parameters such as timestamp, speed, latitude, and longitude as well as ECU parameters such 
as engine speed and fuel consumption. Both sets of parameters are time aligned, which allows 
us to analyze truck fuel consumption at different locations and times. 

 

Figure 29. J1939 Mini LoggerTM used for data collection 

Field Evaluation 

The research team used the truck shown in Figure 30 for the field evaluation of the truck EAD 
sytem. It is a class 8 truck with 13-liter diesel engine and rated power of 455 horsepower. We 
hired a professional truck driver to drive this truck on a designated driving route. The driving 
route was a loop that included four connected intersections on Alameda St and five connected 
intersections on Wilmington Ave, as marked by the white circles in Figure 31. This driving route 
was designed to maximize the driving time on the portion of the two corridors with connected 
intersections. The driver was instructed to drive the route in both clockwise and 
counterclockwise directions so that data were collected on both directions of each corridor. The 
data without the use of Eco-Drive (i.e., baseline data) were collected in July 2020, and the data 
with the use of Eco-Drive were collected in August and September, 2020. Durign the data 
collection in September, the condition of the road on East Lomita Blvd that connects the two 
connected corridors on the south side of the loop became deteriorated. Thus, we modified the 
driving route by using East Sepulveda Blvd instead (i.e., brown dashed line in Figure 31) to 
connect between the two corridors on the south side. As a result, the data analysis was 
conducted on the 2.5-mile segments on both corridors, as shown in Figure 31. 
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Figure 30. Truck used for data collection 

 

Figure 31. Driving route during data collection 
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Data Processing 

The analysis of both baseline and Eco-Drive datasets was conducted following the steps 
described below. 

Data Reduction 

During the data collection, the data logger collected data continuously throughout the driving 
period. However, the analysis was focused only on the 2.5-mile segments shown in Figure 31. 
Note that these analysis segments exclude the portion of driving that involves making a turn at 
each of the four corners of the driving loop. This is to remove the influence of those turning 
movements on the driving performance metrics. Thus, the first step in the data processing was 
to reduce the data to only the portion when the truck was on the analysis segments. This was 
accomplished by a spatial analysis technique called geofencing where virtual boundaries of the 
analysis segments (i.e., geofences) were created on the map, and the data points inside these 
boundaries were identified based on their latitude and longitude information. 

Road Identification 

After that, the selected data points were processed through another spatial analysis technique 
called map matching. Using latitude, longitude, and heading information, each data point was 
assigned to a road link inside the geofences based on its proximity (a data point usually belongs 
to the closest road link), orientation (a data point heads into the same direction as the road 
link), and history (a data point is more likely to be on the same road link as the few previous 
data points than not). The map matching results allowed us to identify data associated with 
each of the four analysis segments below: 

1. Alameda St Northbound 

2. Alameda St Southbound 

3. Wilmington Ave Northbound 

4. Wilmington Ave Southbound 

Performance Metrics Calculation 

Using the data that were processed through the steps described above, we separated the data 
on each analysis segment into multiple observations where each observation represented a 
driving from the start of the analysis segment to the end of the analysis segment. For each data 
observation, we then calculated the performance metrics for the truck as listed below: 

1. Travel distance (miles) 

2. Travel time (seconds) 

3. Average travel speed (miles per hour) 

4. Travel delay (seconds) 

5. Number of stops 

6. Mean of acceleration (mph/s) 

7. Variance of acceleration (mph2/s2) 
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8. Mean of deceleration (mph/s) 

9. Variance of deceleration (mph2/s2) 

10. Fuel consumption (liters) 

Because the use of GPS data to derive these metrics could result in minor discrepancies in 
travel distance of each data observation, we normalized the travel time, travel delay, number of 
stops, and fuel consumption by the travel distance of each data observation. This resulted in 
the performance metrics below, which were used in the analysis instead of their original 
metrics: 

1. Travel time per mile (seconds/mi) 

2. Travel delay per mile (seconds/mi) 

3. Number of stops per mile 

4. Fuel consumption per mile (liters/mi) 

Data Analysis 

The processed data were in the form of a data table with a number of records where each 
record contained the calculated performance metrics for each data observation. This master 
data table was divided into four data tables, one for each of the four analysis segments. Then, 
each data table was further divided into two tables, one for the baseline case and the other for 
the Eco-Drive case. Therefore, there were a total of eight data tables. For each of these data 
tables, the data analysis was performed as follows: 

Data Filtering 

Data filtering was performed to remove data records with incomplete or erroneous driving 
data. This could occur due to unexpected interruptions during the driving, poor GPS signal 
resulting in erroneous data, etc. This was determined based on the travel distance where data 
records with the travel distance outside the range of 2.5 ± 0.3 miles were removed.  

Outlier Detection 

Because the driving data were collected in real-world traffic conditions which could vary 
greatly, there could be circumstances that caused some data observations to be drastically 
different from the rest. For example, an incident or a construction on the road could increase 
the travel time, travel delay, number of stops, and fuel consumption of a data observation 
considerably, making that data observation an outlier. Therefore, outliers were removed to 
minimize their impact on the performance metrics. Out of the 10 performance metrics that 
were calculated, travel time per mile, travel delay per mile, number of stops per mile, and fuel 
consumption per mile were the primary focus as the promise of Eco-Drive was that it could help 
reduce fuel consumption along signalized corridors without significantly impacting travel time 
by reducing number of stops and associated travel delays at connected intersections. 
Therefore, the data records whose values of these four metrics were considered outliers were 
removed. A value was considered to be an outlier if it was outside the range of mean ± 3 times 
the standard deviation. 
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Statistical Analysis 

After the data filtering and outlier detection steps, the remaining data records were used to 
calculate various description statistics (e.g., mean and standard deviation) of each performance 
metric in each of the eight data tables. Then, the difference in the mean values between the 
baseline and the Eco-Drive cases were calculated, and the t-test was conducted to determine if 
the difference was statistically significant at 5% significance level. 

Results 

Table 3 provides descriptive statistics of the 10 performance metrics for both the baseline and 
the Eco-Drive cases. 

Table 3. Descriptive statistics of performance metrics 

 Baseline Eco-Drive 

Count Max Min Mean S.D. Count Max Min Mean S.D. 

Alameda St Northbound 

Travel distance 
(mi) 

41 2.4 2.3 2.4 0.0 76 2.4 2.3 2.4 0.0 

Travel time 
(s/mi) 

41 117.8 79.6 98.4 10.2 76 133.3 81.4 104.9 11.3 

Fuel consumed 
(liters/mi) 

41 0.47 0.25 0.33 0.05 76 0.40 0.24 0.31 0.04 

Travel delay 
(s/mi) 

41 19.2 0.0 5.0 6.0 76 19.7 0.0 5.7 5.3 

No. of stops per 
mile 

41 0.85 0.00 0.36 0.36 76 1.26 0.00 0.39 0.30 

Average speed 
(mph) 

41 45.2 30.6 37.0 3.8 76 44.2 27.0 34.7 3.8 

Mean of accel 
(mph/s) 

41 1.6 0.2 0.8 0.3 76 1.4 0.2 0.7 0.3 

Variance of 
accel (mph2/s2) 

41 2.4 0.1 0.8 0.5 76 1.8 0.0 0.8 0.5 

Mean of decel 
(mph/s) 

41 -0.3 -1.8 -1.0 0.3 76 -0.2 -1.5 -0.8 0.3 

Variance of 
decel (mph2/s2) 

41 2.6 0.0 1.4 0.7 76 3.2 0.0 1.2 0.7 
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 Baseline Eco-Drive 

Count Max Min Mean S.D. Count Max Min Mean S.D. 

Alameda St Southbound 

Travel distance 
(mi) 

56 2.4 2.3 2.4 0.0 73 2.4 2.3 2.4 0.0 

Travel time 
(s/mi) 

56 118.6 72.6 93.3 10.6 73 125.2 77.4 97.2 10.8 

Fuel consumed 
(liters/mi) 

56 0.42 0.23 0.32 0.04 73 0.40 0.22 0.30 0.04 

Travel delay 
(s/mi) 

56 14.8 0.0 3.6 3.8 73 15.2 0.0 4.2 5.0 

No. of stops per 
mile 

56 0.85 0.00 0.34 0.33 73 1.27 0.00 0.30 0.33 

Average speed 
(mph) 

56 49.6 30.4 39.1 4.5 73 46.5 28.8 37.5 4.0 

Mean of accel 
(mph/s) 

56 1.2 0.2 0.7 0.2 73 1.2 0.2 0.7 0.2 

Variance of 
accel (mph2/s2) 

56 1.7 0.0 0.8 0.5 73 1.9 0.0 0.7 0.5 

Mean of decel 
(mph/s) 

56 -0.2 -1.6 -0.9 0.4 73 -0.2 -1.4 -0.8 0.3 

Variance of 
decel (mph2/s2) 

56 2.5 0.0 1.2 0.6 73 3.9 0.0 1.0 0.7 

Wilmington Ave Northbound 

Travel distance 
(mi) 

45 2.6 2.6 2.6 0.0 63 2.6 2.6 2.6 0.0 

Travel time 
(s/mi) 

45 204.7 99.0 148.3 25.0 63 187.7 103.2 137.9 18.9 

Fuel consumed 
(liters/mi) 

45 0.48 0.26 0.38 0.05 63 0.44 0.25 0.33 0.04 

Travel delay 
(s/mi) 

45 84.2 0.0 35.3 20.4 63 59.6 1.5 25.0 16.1 

No. of stops per 
mile 

45 2.31 0.00 1.25 0.57 63 1.91 0.38 0.89 0.36 

Average speed 
(mph) 

45 36.4 17.6 25.0 4.5 63 34.9 19.2 26.6 3.6 

Mean of accel 
(mph/s) 

45 1.5 0.5 1.1 0.2 63 1.4 0.5 0.9 0.2 

Variance of 
accel (mph2/s2) 

45 2.4 0.1 1.3 0.4 63 2.1 0.4 1.2 0.4 

Mean of decel 
(mph/s) 

45 -0.5 -1.9 -1.3 0.3 63 -0.5 -1.7 -1.0 0.2 

Variance of 
decel (mph2/s2) 

45 3.1 0.5 1.7 0.5 63 2.1 0.4 1.3 0.4 
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 Baseline Eco-Drive 

Count Max Min Mean S.D. Count Max Min Mean S.D. 

Wilmington Ave Southbound 

Travel distance 
(mi) 

34 2.6 2.5 2.6 0.0 60 2.6 2.5 2.6 0.0 

Travel time 
(s/mi) 

34 196.1 112.2 146.6 23.7 60 165.3 99.1 130.2 15.3 

Fuel consumed 
(liters/mi) 

34 0.49 0.28 0.40 0.05 60 0.40 0.26 0.34 0.03 

Travel delay 
(s/mi) 

34 58.3 1.2 29.5 16.8 60 38.4 0.0 15.1 9.8 

No. of stops per 
mile 

34 2.69 0.38 1.28 0.59 60 1.92 0.00 0.87 0.44 

Average speed 
(mph) 

34 32.1 18.4 25.1 4.1 60 36.3 21.8 28.0 3.3 

Mean of accel 
(mph/s) 

34 1.6 0.6 1.1 0.2 60 1.3 0.5 0.9 0.2 

Variance of 
accel (mph2/s2) 

34 2.3 0.5 1.3 0.4 60 1.6 0.4 1.0 0.3 

Mean of decel 
(mph/s) 

34 -0.6 -2.1 -1.3 0.3 60 -0.4 -1.4 -1.0 0.2 

Variance of 
decel (mph2/s2) 

34 4.1 0.7 2.0 0.7 60 2.5 0.2 1.3 0.4 

As mentioned earlier, travel time per mile, travel delay per mile, number of stops per mile, and 
fuel consumption per mile are the primary focus of Eco-Drive performance evaluation. This is 
because the promise of Eco-Drive is that it can help reduce fuel consumption along signalized 
corridors without significantly impacting travel time by reducing number of stops and associated 
travel delays at connected intersections. In addition, Eco-Drive can help smooth the driving 
speed profile through reductions in the frequency and magnitude of acceleration and 
deceleration events, which will translate to lower mean acceleration and mean deceleration 
values. Table 4 shows the differences in mean values of these key performance metrics 
between the baseline case and the Eco-Drive case, along with the indicator of their statistical 
significance. The results for each analysis segment are discussed below. 

Table 4. Differences in mean values of performance metrics between baseline and Eco-Drive 

 Alameda St 
NB 

Alameda St 
SB 

Wilmington 
Ave NB 

Wilmington 
Ave SB 

Travel time (s/mi) 6.5%* 4.1%* -7.1%* -11.2%* 

Travel delay (s/mi) 13.3% 19.4% -29.2%* -48.7%* 

No. of stops per mile 7.6% -11.3% -28.8%* -32.0%* 

Fuel consumed (liters/mi) -6.1%* -6.2%* -12.0%* -15.0%* 

Mean of accel (mph/s) -8.2% -11.8%* -15.5%* -18.8%* 

Mean of decel (mph/s) -18.1%* -16.3%* -23.4%* -23.6%* 
*Statistically significant at 5% significance level 
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Alameda St Northbound 

The results show that, on average, fuel consumption in the Eco-Drive case was 6.1% less than in 
the baseline case, and the difference was statistically significant at 5% significance level. 
However, travel time, travel delay, and number of stops in the Eco-Drive case were 6.5%, 
13.3%, and 7.6% more than in the baseline case, respectively, although it should be noted that 
only the travel time difference was statistically significant. The lower fuel consumption in the 
Eco-Drive case is as expected, but the higher travel time is not. To understand the reasons 
behind these results, we plot the speed profiles of the truck along Alameda St Northbound for 
the baseline case and the Eco-Drive case as shown in Figure 32 and Figure 33, respectively. 
Note that there are 41 speed profiles in the baseline case and 76 speed profiles in the Eco-Drive 
case. It can be seen that the free-flow speeds of the truck in the baseline case in Figure 32 were 
generally higher than those in the Eco-Drive case in Figure 33. This explains why the travel time 
in the baseline case was less than in the Eco-Drive case. Note that the speed limit on this 
analysis segment is 45 mph. It is obvious that the truck was exceeding the speed limit more 
often in the baseline case. This implies that Eco-Drive might help the driver better comply with 
the speed limit as Eco-Drive never suggested a driving speed higher than the speed limit. Also, 
the speed limit information was shown on the Eco-Drive screen all the time, reminding the 
driver of the speed limit of the road that the driver was driving on. In addition, the better 
compliance with speed limit also helped reduce speed fluctuations around the cruising speed. 
As reported in Table 4, driving with Eco-Drive resulted in 8.2% lower mean acceleration and 
18.1% lower mean deceleration than driving without it, where the lower mean deceleration 
was statistically significant. These effects likely contributed to less fuel consumption in the Eco-
Drive case as smooth driving with few acceleration and deceleration events is known to result 
in higher fuel efficiency. 

Alameda St Southbound 

The results in Table 4 shows 11.3% fewer number of stops and 6.2% less fuel consumption in 
the Eco-Drive case as compared to the baseline case, where the fuel consumption difference 
was statistically significant. On the other hand, travel time and travel delay in the Eco-Drive 
case were 4.1% and 19.4% more than in the baseline case, respectively, where the travel time 
difference was statistically significant. These results are similar to the results for Alameda St 
Northbound. Figure 34 and Figure 35 show the speed profiles of the truck along Alameda St 
Southbound for the baseline case and the Eco-Drive case, respectively. By comparing these two 
figures, it can be seen that the free-flow speeds of the truck in the baseline case were generally 
higher than those in the Eco-Drive case, which explains why the travel time in the baseline case 
was less than in the Eco-Drive case. As in the case of Alameda St Northbound, Eco-Drive 
seemed to help the driver better comply with the speed limit, which is 45 mph on this analysis 
segment. In addition, the better compliance with speed limit also helped reduce speed 
fluctuations around the cruising speed. As reported in Table 4, driving with Eco-Drive resulted in 
11.8% lower mean acceleration and 16.3% lower mean deceleration than driving without it, 
both of which were statistically significant. These effects likely contributed to less fuel 
consumption in the Eco-Drive case. 
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Wilmington Ave Northbound 

The results in Table 4 show that fuel consumption in the Eco-Drive case was 12.0% less than in 
the baseline case, which was statistically significant. In addition, travel time and travel delay in 
the Eco-Drive case were 7.1% and 29.2% less than in the baseline case, respectively, which were 
statistically significant as well. These fuel and travel time savings can be attributable to the 
28.8% reduction in number of stops, 15.5% lower mean acceleration, and 23.4% lower mean 
deceleration in the Eco-Drive case, all of which were statistically significant. These effects can 
be seen by comparing the truck speed profiles in the baseline case in Figure 36 with those in 
the Eco-Drive case in Figure 37, especially over the three consecutive connected intersections 
with Carson St, 213th St, and Dominguez St. Taking the intersection with 213th St as an example, 
the truck came to a full stop once out of 63 times that it passed that intersection with Eco-
Drive, which is a smaller fraction than one out of 45 times that it passed that intersection 
without Eco-Drive. In addition, at the intersection with Dominguez St, it is evident that the 
fraction of passes without stopping at the intersection in the Eco-Drive case was higher than in 
the baseline case. 

Wilmington Ave Southbound 

Similar to Wilmington Ave Northbound, the results for Wilmington Ave Southbound show that 
fuel consumption in the Eco-Drive case was 15.0% less than in the baseline case, and the 
difference was statistically significant. In addition, travel time and travel delay in the Eco-Drive 
case were 11.2% and 48.7% less than in the baseline case, respectively, and both differences 
were statistically significant. These fuel and travel time savings can be attributable to the 32.0% 
reduction in number of stops per mile, the 18.8% lower mean acceleration, and the 23.6% 
lower mean deceleration in the Eco-Drive case. These effects can be seen by comparing the 
truck speed profiles in the baseline case in Figure 38 with those in the Eco-Drive case in Figure 
39, especially over the connected intersections with 213th St and Dominguez St. It is evident 
that the fraction of passes without stopping at those intersections in the Eco-Drive case was 
higher than in the baseline case. 
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Figure 32. Speed profiles of the truck along Alameda St Northbound without Eco-Drive 

 

Figure 33. Speed profiles of the truck along Alameda St Northbound with Eco-Drive 
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Figure 34. Speed profiles of the truck along Alameda St Southbound without Eco-Drive 

 

Figure 35. Speed profiles of the truck along Alameda St Southbound with Eco-Drive 
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Figure 36. Speed profiles of the truck along Wilmington Ave Northbound without Eco-Drive 

 

Figure 37. Speed profiles of the truck along Wilmington Ave Northbound with Eco-Drive 
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Figure 38. Speed profiles of the truck along Wilmington Ave Southbound without Eco-Drive 

 

Figure 39. Speed profiles of the truck along Wilmington Ave Southbound with Eco-Drive 
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Conclusions 

Eco-approach and departure or EAD at signalized intersections has been shown to be one of the 
most effective CV applications for energy savings and emission reductions. Research and 
development of EAD applications had been focused on passenger cars, and it was only recently 
that EAD was applied to heavy-duty trucks. Nevertheless, most of the research on EAD for 
heavy-duty trucks to date has primarily been conducted in numerical or traffic simulation 
environment. In this project, the research team designed and evaluated user interfaces of an 
EAD system in a heavy-duty truck driving simulator. Then, we implemented the promising user 
interface design in an actual truck EAD system and conducted an evaluation of its effectiveness 
in real world. 

The EAD user interface designs that were evaluated include the audio-only interface and the 
audio & visual interface. Results from the driving experiment show that in general, the audio & 
visual interface results in a similar or higher level of reduction in almost all the metrics. On 
average, the audio-only interface results in reductions in travel time, fuel, CO2, NOx, and PM2.5 
by 10%, 2%, 2%, 4%, and 1% respectively, while the audio & visual interface results in 
reductions in travel time, fuel, CO2, NOx, and PM2.5 by 10%, 4%, 4%, 5%, and 2% respectively. 
When the truck was the lead vehicle with no other preceding vehicle, the truck EAD system 
results in a higher level of reduction in fuel consumption as well as CO2, NOx, and PM 
emissions. On the other hand, the truck EAD system provides a higher level of reduction in 
travel time when there were other vehicles present. These trends are true for both the audio-
only and the audio & visual configurations. 

Surveys were also conducted of the truck drivers who participated in the EAD user interface 
evaluation experiment. According to the survey results, a majority of the drivers thinks that 
both the SPaT information and the advisory speed are very useful or extremely useful. It is also 
clear that most drivers would prefer the audio & visual interface and that they would always 
use the truck EAD system with this type of user interface if it is available on their trucks. Based 
on these findings and the superior performance of the audio & visual interface in the driving 
experiment, we implemented this user interface on a truck EAD system, called Eco-Drive, for a 
real-world evaluation. 

The results from the Eco-Drive performance evaluation show that driving with Eco-Drive 
resulted in less fuel consumption than driving without it by 6% to 15%, but the underlying 
reasons for which the fuel savings were achieved varied by analysis segment. On both 
Northbound and Southbound of Alameda St, Eco-Drive helped the driver better comply with 
the speed limit, which is 45 mph on both analysis segments. It can be observed from the truck 
speed profiles that the truck was exceeding the speed limit less often in the Eco-Drive case than 
in the baseline case. In addition, the better compliance with speed limit also helped reduce 
speed fluctuations around the cruising speed, resulting in lower mean acceleration and mean 
deceleration values. Smooth driving with few acceleration and deceleration events is known to 
result in higher fuel efficiency. On the other hand, the better compliance with speed limit while 
driving with Eco-Drive caused the travel time to be longer than driving without it. This should 
not be viewed negatively as it was due to the baseline driving exceeding the speed limit more 
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frequently. In fact, the better compliance with speed limit can be viewed as another benefit of 
Eco-Drive as it could help improve safety for the driver and the surrounding traffic. 

On both Northbound and Southbound of Wilmington Ave, Eco-Drive helped cut down number 
of stops at connected intersections considerably, which resulted in lower mean acceleration 
and mean deceleration values. These effects contributed to not only fuel savings but also travel 
time savings when driving with Eco-Drive on these analysis segments. Note that the fuel savings 
observed on Wilmington Ave Northbound and Wilmington Ave Southbound (12% and 15%, 
respectively) are much higher than those on Alameda St Northbound and Alameda St 
Southbound (6% for both). This may be because the driver was able to use Eco-Drive at five 
intersections on Wilmington Ave Northbound and Wilmington Ave Southbound while he could 
do so at only three intersections on Alameda St Northbound and Alameda St Southbound. 

It should be noted that during the data collection the truck was not pulling any load (i.e., 
bobtailing). It is expected that Eco-Drive would provide a higher level of fuel savings than 
observed in this evaluation if the truck pulls a load, especially a heavy one. This is because the 
effects of acceleration and deceleration events on fuel consumption would be more 
pronounced when pulling a heavy load. Thus, avoiding those events would result in more fuel 
savings. Since drayage trucks pull some load for at least half of the time, whether it be empty 
container or loaded container, it is recommended that the effectiveness of Eco-Drive be also 
evaluated under those circumstances in future work. 

In addition, it is recommended that the potential traffic safety benefits of Eco-Drive be studied 
in future research. Although the data collected in this project show anecdotal evidence that the 
truck driver better complied with the speed limit of the road when driving with Eco-Drive, more 
data from additional drivers should be collected to verify this finding. If Eco-Drive is also found 
to improve traffic safety in addition to climate and air quality, it will provide more reasons to 
support the investment in connected infrastructure that enables Eco-Drive and other CV 
applications.  
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Truck Eco-Routing 

Introduction 

Background 

Routing is a major strategy for managing truck traffic in communities. Many cities have 
designated truck routes for carrying commercial vehicles between the highways and 
commercial zones in the city. The designation of truck routes typically takes into account road 
type, available right-of-way, traffic volume, clearance, safety, among others. Cities also often 
avoid routing trucks through residential zones due to concerns regarding traffic safety as well as 
air and noise pollution. Nevertheless, as land use, population, and truck traffic pattern in the 
area evolve, these concerns may re-emerge and truck routes may need to be updated to 
mitigate the impacts of truck traffic.  

From the truck driver perspective, routing involves determining a specific travel route to take 
from an origin (e.g., the current location) to a destination (e.g., delivery location). Over the past 
several years, there has been proliferation of navigation systems in multiple platforms to assist 
truck drivers with that task. Some navigation systems can take truck-specific restrictions such as 
truck routes and clearance into consideration. These navigation systems primarily find the 
shortest distance or shortest time route between an origin and a destination. It is commonly 
assumed that taking either of these routes will also result in minimum fuel consumption and 
emissions from the vehicle. However, there are several cases where this may not be true. A 
shortest distance route may include roadway sections with steep road grades, requiring more 
energy for the vehicle to climb the hills while producing more emissions in the process. The 
route may also have the vehicle travel through heavily congested roadways, resulting in longer 
travel time and more fuel consumption and emissions. A shortest time route may have the 
vehicle travel longer distance, albeit on less congested roadways. Traveling at high speeds for 
longer distance will result in higher fuel consumption (and emissions) compared to a more 
direct route at lower speeds. This is especially true for heavy-duty trucks whose power-to-
weight ratio is low. 

Related Work 

Over the last decade, there has been much research and development on new routing 
techniques for navigation systems. Instead of finding the shortest distance or shortest time 
route for the trip, these new routing techniques are aimed at finding the route that would 
minimize vehicle energy consumption and/or emissions. These so-called “eco-routing” 
techniques were focused initially on energy consumption and mostly on passenger cars 
(Boriboonsomsin et al., 2012; Boriboonsomsin et al., 2014). Figure 40 shows an example eco-
routing application that displays multiple route options—shortest distance (blue), shortest time 
(purple), and least fuel consumption (green)—for a trip from Los Angeles Airport to Downton 
Los Angeles. 
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Figure 40. Eco-routing application for passenger cars (Boriboonsomsin et al., 2012) 

Eco-routing techniques have also been applied to other types of vehicle including heavy-duty 
trucks. For instance, Scora et al. (2015) developed an eco-routing application for HDDTs and 
compared the least fuel consumption route with the shortest time route for more than 500,000 
simulated truck trips in the Greater Los Angeles Metropolitan Area. It was found that, as 
compared to the shortest time route, the least fuel consumption route would require 4% to 
33% less fuel, but it would increase travel time by 6% to 53%. By converting fuel and travel time 
into monetary values, it was found that the least fuel consumption route would result in net 
dollar savings for about 50% of the simulated trips. Based on this finding, it was suggested that 
eco-routing could be beneficial to truck drivers and fleet operators. They can choose to use the 
fuel-optimized route for those trips where the fuel savings justify the extra travel time. 

Eco-routing techniques are also aimed at finding the route that would minimize vehicle 
emissions. Note that the least fuel consumption route is also the least CO2 emission route. 
However, this may not be true for other pollutant emissions such as NOx and PM2.5. The 
reason is that different emissions have different relationships with travel speed. Compared to 
energy-based or fuel-based routing, less attention has been given to emission-based routing, 
especially for pollutant emissions. This may be because while fuel cost accounts for about 20-
25% of total operating cost of commercial trucking (Hooper and Murray, 2018), there is 
currently no incentive for truck drivers and fleet operators to reduce pollutant emissions from 
their trucks through routing. 

A recent study by Scora et al. (2019) investigated the effect of route choice on fuel 
consumption and emission of HDDTs through real-world experiments. In each experiment, two 
identical model year 2014 HDDTs left the same origin at the same time, but took different 
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routes to the same destination. A total of four experiments were conducted and their results 
are shown in Table 5. 

Table 5. Comparison of two alternative routes taken by identical heavy-duty diesel trucks for 
the same trips (Scora et al., 2019) 

Trip Route Location Duration 
(min) 

Distance 
(miles) 

Average Trip 
Speed (mph) 

Fuel 
(Liters) 

Measured 
NOx (g) 

1 1 
2 

Riverside to 
Ontario 

24.32 21.53 53.12 8.2 15.53 

19.03 14.12 44.52 5.57 18.83 

 Route Difference (%) 
 

21.75 34.42 16.19 32.07 -21.41 

2 1 
2 

Ontario to 
Vernon 

48.63 43.4 53.55 15.22 27.19 

50.22 42.63 50.93 13.01 31.91 

 Route Difference (%) 
 

-3.27 1.77 4.88 14.52 -17.37 

3 1 
2 

Vernon to 
San Pedro 

45.75 24.98 32.76 10.29 37.92 

47.77 30.43 38.22 11.34 26.5 

 Route Difference (%) 
 

-4.42 -21.82 -16.67 -10.20 30.11 

4 1 
2 

San Pedro to 
Corona 

48.23 28.44 35.38 12.01 20.18 

60.68 25.66 25.37 11.13 38.53 

 Route Difference (%) 
 

-25.81 9.77 28.29 7.33 -90.98 

The experiment results in Table 5 confirm that the choice of travel route can have significant 
impacts on trip metrics including distance, duration, average speed, fuel consumption, as well 
as pollutant emission (in this case, NOx). Among the four trips experimented, the route with 
less NOx emission was not necessarily the shorter or faster route. In fact, the route with less 
NOx emission took longer distance, had higher average speed, and consumed more fuel (and 
thus, produced more CO2 emission) in all four experiments. This may be explained by the fact 
that the effectiveness of selective catalytic reduction (SCR), commonly used in HDDTs of model 
year 2010 and newer, in controlling NOx emission depends on having high enough exhaust gas 
temperatures, which usually occur when the truck travels at high speeds, incurring high engine 
load and consuming more fuel (Misra et al., 2013). 

It should be noted that the impacts of travel route on NOx emission may be different for HDDTs 
of model years 2009 and older that are not equipped with SCR, or for future HDDTs that comply 
with the upcoming CARB’s low-NOx engine standards for new on-road heavy-duty engines 
(California Air Resources Board, 2021). In the latter case where NOx emissions from HDDTs 
would be significantly lower than the current level, the ability of eco-routing to find a travel 
route that would require less fuel consumption and produce less CO2 emission from HDDTs 
would be beneficial.  
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Research Objectives 

The choice of travel route for HDDTs is usually made by truck drivers or fleet operators, and the 
primary metric for making that route choice decision is travel time. The experiment results in 
Table 5 show that sometime the fastest route is already the more fuel-efficient or eco route 
(i.e., Trips #1 and #3). Other times when that is not the case, the eco route may not be 
practical. For instance, Route #2 for Trip #4 took over 12 minutes longer (26%) than Route #1, 
but saved less than one liter of fuel (7%). On the other hand, Trip #2 represents a scenario 
where truck eco-routing could be attractive for truck drivers or fleet operators. For this trip, 
Route #2 took just a little over a minute longer (3%) but consumed 1.2 liters or about a third of 
a gallon (15%) less than Route #1. 

Currently, the type of information presented in Table 5 is not available to truck drivers, and it is 
not possible to assess how often and how much truck drivers or fleet operators could benefit 
from eco-routing in their typical operations. Therefore, the objectives of this research are to: 1) 
apply truck eco-routing to real-world truck operation data to determine the eco route for each 
trip, and 2) compare trip metrics of the eco route with those of the fastest route to evaluate the 
tradeoff between fuel consumption and travel time. 

Methodology 

Truck Eco-Routing Application 

The truck eco-routing application used in this project is based on the UCR’s eco-routing 
application developed in previous research (Boriboonsomsin et al., 2012; Scora et al., 2015). 
The various components of the application are illustrated in the block diagram in Figure 41. 
They include: 

1. Dynamic Roadway Network (DynaNet) – This is a digital map of roadway network that 
integrates historical and real-time traffic information from multiple sources. DynaNet 
also contains road grade information of roadway links where available. 

2. Roadway Fuel Consumption and Emission Calculator – At the heart of this component 
are mesoscale vehicle energy and emissions models, which estimate fuel consumption 
and emission factors per unit distance for a vehicle of a certain vehicle (plus cargo) 
weight traversing a roadway link with a certain road grade at a certain average speed. 
The fuel consumption and emission factors are later multiplied by the link length to 
result in the vehicle fuel consumption and emission estimates associated with that 
roadway link. 

3. Routing Engine – This component consists of optimization algorithms used for 
calculating optimal routes. 

4. User Interfaces – The user interfaces receive trip origin/destination inputs from the user 
and display route maps to the user based on various routing criteria. 
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Figure 41. Components of UCR’s eco-routing application 

Mesoscale Fuel Consumption Model 

The energy consumption and emissions production of a vehicle are related to the power 
requirement at the vehicle’s wheels. There are several factors which determine this power 
requirement and they fall into two general categories—the physical characteristics of the 
vehicle and the trajectory or operation of the vehicle. A vehicle’s physical characteristics include 
aerodynamic shape, frontal area, tire-road friction and vehicle mass. These characteristics 
determine some of the major forces that a vehicle encounters during real-world operation. 
Vehicle weight is an important physical characteristic to consider since it can vary substantially. 
This is especially true for HDDTs, which can range in weight from roughly 15,000 lbs to 80,000 
lbs depending on payload. Vehicle trajectory characteristics such as vehicle speed and road 
grade are important factors that also significantly influence vehicle power requirements. 

In order to represent truck energy and emissions in the truck eco-routing application on a 
roadway link-by-link basis (as opposed to on a microscale, second-by-second basis), mesoscale 
models are needed. Scora et al. (2015) applied multiple linear regression to develop a 
mesoscale truck fuel consumption model that calculates, for each link on the roadway network, 
fuel consumption factors that are used by the routing engine to determine the least fuel 
consumption route. The model relates truck fuel consumption with the key variables of average 
travel speed, vehicle (plus cargo) weight, and road grade (see Figure 42). The model also 
accounts for the effects of these variables on one another through the use of linear and non-
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linear interaction terms as shown in Equation 1. It has an R2 of 0.88, and its intercept and 
regression coefficients are provided in Table 6.  

 

Figure 42. Schematic of modeling data set development based on vehicle activity, vehicle 
weight, and road grade (Scora et al., 2015) 

 f = a0 + a1∙m + a2∙g + a3∙g∙m + a4∙g2∙m + a5∙v + a6∙v2 (Eq. 1) 

where:  

f  = fuel consumption 
m  = vehicle mass 
g  = road grade 
v  = vehicle velocity 
a0, …, a6  = regression coefficients 
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Table 6. Regression coefficients in mesoscale truck fuel consumption model (Scora et al., 
2015) 

a0 a1  a2  a3  a4  a5  a6  

7.14E+02 9.82E-03 4.34E+00 2.86E-03 2.04E-04 -2.84E+01 2.82E-01 

Evaluation 

Real-World Truck Trip Data 

In order to evaluate the potential of truck eco-routing in providing fuel savings to truck drivers 
and fleet operators, a real-world dataset of 48 HDDTs from a regional distribution fleet in Inland 
Southern California was used. The dataset contains multiple data files associated with the 
fleet’s operation on June 16, 2020. These include:  

• Order data file – This file contains the details of pickup and delivery orders such as order 
type (pickup or delivery), customer location, arrival and departure times, total cargo 
weight, and total number of pieces. 

• Vehicle data file – This file contains truck ID, sum of orders, sum of total pieces, sum of 
total pallets, sum of total cargo weight. 

• Telemetry data file – This file contains time series data collected from an on-board 
telematics device. The data includes timestamp, latitude, longitude, heading, geographic 
location, ignition status, speed, and odometer. 

By combining the data in these three files, the research team reconstructed the full itinerary of 
each truck on that day. Figure 43 shows the itinerary of an example truck in the dataset. It 
started from the home based in Ontario and made pickups and deliveries at the locations 
indicated by blue dots southwest of Ontario. The label of each blue dot represents the 
sequence of stop and the type of stop. For example, “1-P” was the first stop of the day and it 
was a pickup stop. “3-D” was the third stop and it was a delivery stop. It can be observed that 
several stop locations are close to each other. This is by design as it is more efficient to have 
one truck service multiple orders in the same area. As a result, many of the trips that the truck 
made were short trips on surface streets. 
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Figure 43. Itinerary of an example truck in the 48-truck dataset 

During the itinerary reconstruction process, the research team also cleaned and organized the 
data. For example, the total number of orders that the trucks serviced on that day was 850. 
However, there were some cases that a truck serviced multiple orders at the same customer 
location at the same time. Hence, we combined those orders into one and summed the cargo 
weight together. In all, the 48 trucks made a total of 456 trips including the end-of-day trip back 
to the home base. Although the telemetry data is in time series, the time intervals between 
consecutive data points are not fixed, ranging from 1 minute to 15 minutes. Also, the data 
points do not always match up with the arrival and departure times for pickup or delivery. This 
is because the latter data were entered manually by the drivers and are prone to errors. 
Therefore, we regenerated the itinerary of each truck based on the time instances that it 
arrived or departed customer locations. Specifically, the itinerary contains: 

• Order ID 

• Event type (departure from home base, return to home base, pickup, or delivery) 

• Truck ID 

• Arrival time 

• Departure time 

• Duration (from arrival time to departure time) 

• Address 
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• Latitude 

• Longitude 

• Cargo weight (for the order) 

• Travel distance (from the previous order location to the current order location) 

As the initial weight of each truck at the beginning of the day is unknown, it was assumed that 
the trucks would deliver all the cargos loaded onto them. As a result, the initial weight at the 
beginning of the day could be calculated by summing the cargo weight of all the delivery orders 
in that day. Once the initial weight at the beginning of the day had been established, the cargo 
weight on the truck during any trips on that day could be calculated. Thus, we had all the 
necessary input data for truck eco-routing, i.e., trip origin and destination, departure time, and 
vehicle plus cargo weight. Because the route calculation was made for past trips, historical 
traffic information based on the trip departure time was used in the calculation. For each of the 
456 trips, the fastest route and the eco route, in terms of least fuel consumption, were 
calculated. 

Overall Results 

Table 7 summarizes the route attributes of the fastest route and the eco route for all the 456 
trips, including trip distance, travel time, average speed, fuel consumption, and NOx emission. 
NOx emission was estimated for HDDTs of model year 2009 and older as well as HDDTs of 
model year 2010 and newer, using the mesoscale NOx emission models provided in Scora et al., 
2019. In order to present the results from 456 trips succinctly, we grouped the trips based on 
how much travel time increase it would be to take the eco route instead of the fastest route. 
For instance, the “Maximum Travel Time Increase (%)” of “0” means that for the trips in this 
group, the eco route and the fastest route would take the same amount of time. The 
“Maximum Travel Time Increase (%)” of “2” means for the trips in this group, the eco route 
would take 0.1% to 2% longer than the fastest route; “5” means for the trips in this group, the 
eco route would take 2.1% to 5% longer than the fastest route; and so forth. The values of 
route attributes shown in the table are the average value for the trips in each group. 

Based on the results in Table 7, the following observations were made with regards to the 
tradeoff between fuel savings and travel time increase from taking the eco route: 

• There are 236 trips (52% of the total) in group “0” where the eco route would take the 
same amount of time as the fastest route. Because the average route attributes of both 
routes are identical, it can be concluded that for all of these trips, the fastest route is 
already the least fuel consumption route. These trips are mostly very short, less than 3 
miles on average, and may not have more than one realistic route option to begin with.
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Table 7. Comparison of route attributes between fastest route and eco route for all trips 

Maximum Travel Time Increase (%) 0 2 5 10 15 20 25 30 40 50 >50 All 

Number of trips 236 21 38 46 26 23 12 19 28 6 1 456 

Fraction of all trips (%) 51.8 4.6 8.3 10.1 5.7 5.0 2.6 4.2 6.1 1.3 0.2 100.0 

Fastest Route (FR) 

Distance (miles) 2.8 6.6 8.3 12.9 15.0 19.1 18.6 23.1 20.5 23.8 24.8 8.6 

Travel time (minutes) 4.2 9.3 10.3 14.7 16.5 20.3 19.4 24.0 21.4 24.3 24.0 10.1 

Average speed (mph) 39.9 42.8 48.2 52.8 54.5 56.6 57.6 57.8 57.5 58.9 62.0 51.3 

Fuel consumption (gal) 0.5 1.1 1.6 2.6 2.8 3.4 3.5 4.6 3.9 5.4 5.3 1.6 

NOx emission, MY2009- (g) 3.1 6.9 9.0 14.2 15.8 20.1 19.9 25.7 21.9 27.1 28.5 9.4 

NOx emission, MY 2010+ (g) 15.5 16.9 21.5 35.9 39.1 57.7 49.0 64.7 72.0 75.4 50.2 28.8 

Eco Route (ER) 

Distance (miles) 2.8 6.1 7.9 12.3 14.1 18.3 18.2 22.4 20.1 23.6 24.7 8.4 

Travel time (minutes) 4.2 9.3 10.6 15.9 18.4 23.8 23.9 30.6 28.8 34.6 36.2 11.5 

Average speed (mph) 39.9 39.4 44.6 46.7 46.0 46.3 45.8 43.9 41.8 40.9 40.9 43.5 

Fuel consumption (gal) 0.5 1.0 1.5 2.4 2.6 3.2 3.3 4.3 3.7 5.1 5.1 1.5 

NOx emission, MY2009- (g) 3.1 6.5 8.7 13.8 15.2 19.5 19.8 25.8 22.4 28.4 29.8 9.3 

NOx emission, MY 2010+ (g) 15.5 17.7 24.3 41.5 51.1 67.7 59.0 80.5 103.6 140.9 54.0 34.6 

Percent 
Difference (ER vs. 
FR) 

Distance 0% -7% -4% -5% -6% -4% -2% -3% -2% -1% 0% -3% 

Travel time 0% 1% 3% 8% 12% 17% 23% 27% 35% 42% 51% 14% 

Average speed 0% -8% -8% -11% -16% -18% -21% -24% -27% -30% -34% -15% 

Fuel consumption 0% -7% -5% -7% -8% -7% -6% -6% -7% -5% -5% -5% 

NOx emission, MY2009- 0% -5% -3% -3% -4% -3% -1% 1% 2% 5% 5% -1% 

NOx emission, MY 2010+ 0% 5% 13% 16% 31% 17% 21% 24% 44% 87% 8% 20% 
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• There are 105 trips (23% of the total) in groups “2”, “5”, and “10” where the eco route 
would take 1% to 8% longer time than the fastest route on average, but could result in 
5% to 7% fuel savings. The travel time increase from taking the eco route for these trips 
would be one minute or less on average, which in real world may not be noticeable. 
Therefore, the eco route would be considered attractive from the fuel savings versus 
travel time increase tradeoff perspective, especially for the 21 trips (5% of the total) that 
have the average travel time increase of merely 1%. 

• There are 49 trips (11% of the total) in groups “15” and “20” where the eco route would 
take 12% to 17% longer time than the fastest route on average, but could result in 7% to 
8% fuel savings. The travel time increase from taking the eco route for these trips would 
be 2 to 3.5 minutes on average. For these trips, the eco route could still be considered 
to be acceptable from the fuel savings versus travel time increase perspective. 

• For the other 66 trips (15% of the total) in the remaining groups, taking the eco route 
would result in more than 20% longer travel time while the fuel savings would be 5% to 
7% on overage. For these trips, the eco route would not make economic sense from the 
fuel savings versus travel time increase perspective. 

• According to the average trip distance of the different groups, the eco route typically 
makes no difference for trips shorter than 3 miles. It is mostly attractive for trips with 
distance between 3 and 13 miles, generally acceptable for trips with distance between 
13 and 20 miles, and usually impractical for trips with distance greater than 20 miles. 

In terms of NOx emission associated with taking the eco route, the trends are opposite for 
HDDTs of model years 2009 and older (MY 2009-) and HDDTs of model years 2010 and newer 
(MY 2010+). In case of the former, taking the eco route would result in not only fuel savings but 
also a reduction in NOx emission at a similar level. For example, for those attractive trips where 
taking the eco route would result in 5% to 7% fuel savings with minimal travel time increase, 
doing so would also result in 3% to 5% reduction in NOx emission if the truck was of model year 
2009 or older. On the other hand, for those same trips, taking the eco route would result in 5% 
to 16% increase in NOx emissions if the truck was of model year 2010 or newer, which are likely 
equipped with SCR. However, it should be noted that the CARB low-NOx engine standards will 
help address the issue of high NOx emission under low engine load, and consequently low SCR 
temperature, conditions. Therefore, the impact of taking the eco route on NOx emission may 
not be much of a concern for HDDTs that comply with the low-NOx engine standards. 

Example Trips 

For brevity, we present here the routing results of three example trips, one from each of the 
“Maximum Travel Time Increase (%)” groups of “2”, “5”, and “10” in Table 7, where the eco 
route would be attractive. The route attributes of the fastest route and the eco route for these 
example trips are given in Table 8, and the maps of the routes are displayed in Figure 44 
through Figure 46. 

For example trip #1 shown in Figure 44, the fastest route is to take the freeway I-605 to the 
west of the trip origin and destination, while the eco route is to take the arterial that directly 
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connects the trip origin and destination. Therefore, the eco route has a 28% shorter distance 
(8.0 miles vs. 11.1 miles), while the travel times for both routes are about the same (14 
minutes). Taking the eco route would consume 27% less fuel (1.5 gallons vs. 2 gallons) and 
produce less NOx emission (19% for HDDTs MY2009- and 15% for HDDTs MY2010+). 

For example trip #2 shown in Figure 45, the fastest route is to take the freeway SR-91 to the 
south of the trip origin and destination, while the eco route is to take the arterial that runs in 
parallel to the freeway. For this trip, the eco route has a 18% shorter distance (4 miles vs. 5 
miles), but take 4% longer travel time (7.0 vs. 6.7 minutes). Taking the eco route would 
consume 19% less fuel (0.6 gallons vs. 0.8 gallons) and produce less NOx emission (15% for 
HDDTs MY2009- and 3% for HDDTs MY2010+). 

For example trip #3 shown in Figure 46, the fastest route is to take the freeway I-10 to the 
north of the trip origin and destination, while the eco route is to take the arterial that arterial 
that runs in parallel to the freeway. For this trip, the eco route has a 8% shorter distance (7.6 
miles vs. 8.3 miles), but take 6% longer travel time (10.2 vs. 9.6 minutes). Taking the eco route 
would consume 13% less fuel (1.8 gallons vs. 2.0 gallons) and produce 7% less NOx emission if 
truck is of model year 2009 or older. If the truck is of model year 2010 or newer, taking the eco 
route for this trip would produce 1% more NOx emission. 

Table 8. Comparison of route attributes between fastest route and eco route for example 
trips 

Example Trip No. 1 2 3 

Fastest Route 
(FR) 

Distance (miles) 11.1 5.1 8.3 

Travel time (minutes) 13.8 6.7 9.6 

Average speed (mph) 47.9 45.7 51.4 

Fuel consumption (gal) 2.0 0.8 2.0 

NOx emission, MY2009- (g) 11.2 5.2 9.8 

NOx emission, MY 2010+ (g) 18.8 8.7 16.4 

Eco Route (ER) 

Distance (miles) 8.0 4.2 7.6 

Travel time (minutes) 13.9 7.0 10.2 

Average speed (mph) 34.6 36.0 44.6 

Fuel consumption (gal) 1.5 0.6 1.8 

NOx emission, MY2009- (g) 9.1 4.4 9.2 

NOx emission, MY 2010+ (g) 16.0 8.4 16.5 

Percent 
Difference (ER vs. 
FR) 

Distance -28% -18% -8% 

Travel time 0% 4% 6% 

Average speed -28% -21% -13% 

Fuel consumption -27% -19% -13% 

NOx emission, MY2009- -19% -15% -7% 

NOx emission, MY 2010+ -15% -3% 1% 

According to the routing results of the three example trips, there are some common 
characteristics of eco route. For all three trips, the eco route is the route on a major arterial 
that directly connects the trip origin and destination. As a result, it has a shorter distance than 
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the fastest route, which requires the truck to drive away from the destination in order to get on 
a freeway. While the truck can travel at a higher speed on the freeway, the extra travel distance 
between the trip origin and the freeway entrance as well as between the freeway exit and the 
trip destination adds an extra travel time to the fastest route. At the end, the two routes have 
comparable travel times, but the eco route has a shorter distance and consumes less fuel. 

 

Figure 44. Fastest route (purple) and eco route (green) for example trip #1 
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Figure 45. Fastest route (purple) and eco route (green) for example trip #2 

 

Figure 46. Fastest route (purple) and eco route (green) for example trip #3 
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Conclusions 

Over the last decade, there has been much research and development on new routing 
techniques for navigation systems. These include eco-routing that is aimed at finding the route 
that would minimize vehicle energy consumption and/or emissions for the trip. To date, most 
of the research and development of eco-routing has been focused on passenger cars. Although 
there have been some research studies that apply eco-routing to heavy-duty trucks, they are 
based on hypothetical trips that may not be representative of the typical operations of truck 
fleets. Thus, it is not possible to assess how often and how much truck drivers or fleet operators 
could benefit from eco-routing in their typical operations. Therefore, in this project the 
research team applied eco-routing to the real-world truck operation data of a regional 
distribution fleet in Inland Southern California to determine the eco route for each trip, and 
then compared trip metrics of the eco route with those of the fastest route to evaluate the fuel 
savings potential from eco-routing. 

Based on the results of 456 trips made by 48 trucks in a typical day, it was found that for 52% of 
the trips the fastest route is already the most fuel-efficient route. These trips tend to be very 
short, less than 3 miles on average, and may not have more than one realistic route option to 
begin with. For another 23% of the trips, the eco route would take up to one minute (1% to 8%) 
longer travel time than the fastest route on average, but would result in 5% to 7% fuel savings. 
This would be considered attractive from the fuel savings versus travel time increase tradeoff 
perspective. For another 11% of the trips, the eco route would take up to 3.5 minutes (12% to 
17%) longer travel time on average, but would result in 7% to 8% fuel savings, which could still 
be considered to be acceptable. In other words, there is potential for truck eco-routing to help 
the trucks in this analysis save fuel (and reduce CO2 emission) on about a third of their trips. 

The choice of travel route is usually made by truck drivers or fleet operators, and the primary 
metric for making that route choice decision is travel time. In this research, it is demonstrated 
that the eco route for any given trip can very well be different from the fastest route. By 
providing additional route options and the corresponding travel costs to the drivers, they can 
consider the tradeoff among the routes and make a choice with regards to which route to take 
based on their preferences and circumstances. For example, the eco route may be chosen if it 
would still allow the truck to arrive at the destination within a specified time window, while the 
fastest route may be preferred if the truck needs to meet a stringent delivery schedule. Even if 
the drivers take the eco route in some of their trips, it could still contribute to significant fuel 
savings and CO2 emission reductions, which are beneficial to the drivers and fleet operators as 
well as to the society. Thus, it is recommended that eco-routing be promoted or incentivized 
for use among truck drivers and fleet operators.  
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Integrated Traffic Control Strategies 
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Introduction 

Due to the rapidly increasing demand for transportation and mobility, traffic congestion has 
become a significant problem worldwide. Traffic congestion has a negative impact on traffic 
mobility, safety, and the environment. In the United States during 2014, for example, the yearly 
delay time per auto commuter due to congestion was 42 hours, which increased by 13.5% 
compared to 37 hours in 2000. The fuel wasted in congestion was 19 gallons per commuter per 
year in 2014, which grew by 26.7% when being compared to 15 gallons per commuter per year 
in 2000 (Schrank et al. 2015). Moreover, unstable traffic flow conditions on highway segments 
are known to increase the possibility of collisions (Marchesini and Weijermars 2010). Therefore, 
efficient traffic flow control strategies are needed to avoid or reduce the severity of congestion, 
hence reduce fuel consumption and tailpipe emissions along the lanes of highway networks. 
Furthermore, in order to evaluate the environmental impact of potential traffic flow control 
strategies precisely and efficiently, well-defined emission models are needed to estimate or 
predict fuel consumption and tailpipe emissions of vehicles under different traffic scenarios in 
both simulations and field tests. 

In highway traffic, bottlenecks often arise due to incidents, construction, merge or diverge 
points, and other road conditions. When traffic demand is higher than the capacity of the 
bottleneck, congestion occurs. One possible way to solve the highway congestion problem is to 
expand existing highway networks. However, this solution is usually constrained by the long 
building period and limited capital investment. Hence, increasing the utility of existing road 
infrastructure with advanced traffic control strategies is a more attractive solution to highway 
congestion. To prevent or relieve highway congestion, different Intelligent Transportation 
Systems (ITS) techniques, e.g., dynamic routing, driver information systems, variable speed limit 
(VSL), ramp metering (RM), and many others, are widely studied and applied to improve the 
efficiency of existing road networks (Abadi, Ioannou, and Dessouky 2016; Butakov and Ioannou 
2015; Y. Zhang and Ioannou 2017a; Markos Papageorgiou, Hadj-Salem, and Blosseville 1991; Lu 
et al. 2011). 

Existing works on the development and evaluation of VSL, RM and LC control have reported 
consistent improvements in traffic safety in theories, macroscopic simulations, microscopic 
simulations and field tests (Van den Hoogen and Smulders 1994; Y. Wang and Ioannou 2011a; 
Lu and Shladover 2014), while the impact on traffic mobility and environment is rather 
controversial. Although most of previous studies are able to show improvements of traffic 
mobility in macroscopic simulations with different traffic flow control strategies, when it comes 
to microscopic simulations and field tests, these improvements are not consistent under 
different traffic conditions or incident scenarios. In some cases, the travel time is improved and 
in others deteriorated due to the deployment of traffic flow controllers which raises questions 
as to the ability of VSL, RM and LC to improve traffic mobility (Hadiuzzaman, Qiu, and Lu 2012; 
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Baldi et al. 2014; Torne Santos, Rosas, and Soriguera 2011; K. Gao 2012; Kejun et al. 2008; P. 
Ioannou et al. 2012). Most researchers attribute the inconsistencies in travel time improvement 
to the highly disordered and stochastic traffic conditions at congested bottlenecks, which are 
difficult to predicts and regulate (P. Ioannou et al. 2012; Y. Wang and Ioannou 2011b; Torne 
Santos, Rosas, and Soriguera 2011; Van den Hoogen and Smulders 1994). While these 
arguments have an element of truth, some questions are need to be asked as follows: 

1. What is the behavior of the traffic flow in a road network? Under what condition the road 
network will get congested and what are the reasons of the disordered behavior of the 
traffic flow at the bottleneck? 

2. Is it possible to reduce the disorder at the bottleneck, therefore the consistency between 
macroscopic and microscopic simulations can be achieved? 

3. Is it possible to find efficient VSL, RM and LC control strategies which are able to improve 
the traffic mobility at highway bottlenecks and robust to different incident scenarios? 

4. Given the complexity of underlying reasons of highway congestion, is it possible to apply 
multiple traffic flow control strategies simultaneously in a integrated and systematic 
manner, such that different control strategies can work along with each other 
coordinately without deteriorate the benefit introduced by other control strategies. 

5. Is it possible to find a traffic control strategy that can improve the traffic mobility under 
all possible traffic scenarios and capacity constraints as well as initial conditions? 

Motivated by the above questions, this project dedicates to the design, analysis and evaluation 
of integrated traffic flow control strategies which is able to provide consistent improvement in 
traffic mobility, safety and environmental impact. The goal of the integrated controller is to 
stabilize and homogenize the traffic flow upstream a highway bottleneck, therefore improve 
the traffic mobility, safety and the environmental impact. We also evaluate the robustness of 
the integrated controller with respect to different levels of traffic demand, model parameters 
and measurement noise in both macroscopic and microscopic simulations. Furthermore, the 
open-loop stability properties of the modified cell transmission traffic flow model (CTM) which 
takes the capacity drop phenomenon into consideration under all possible traffic flow scenarios 
are investigated, which motivates the design of a VSL controller which is able to avoid the 
capacity drop, stabilize the system and maximize the flow rate at the bottleneck. The VSL 
controller is then extended with integral action in order to reject system disturbance. 

Existing Work 

In the past several decades, numerous studies have been conducted to explore the effect of 
VSL, RM and LC control on traffic mobility, safety and the environmental impact. 

VSL control has been one of the widely studied highway traffic control technologies since the 
1990s (Smulders 1990). Papageorgiou et al. studied the effect of VSL on the fundamental 
diagram in (Markos Papageorgiou, Kosmatopoulos, and Papamichail 2008). It is shown that VSL 
control decreases the slope of the fundamental diagram when the vehicle density is lower than 
the critical value and increases the critical density. The flow at the same density would be 
higher with VSL in over critical conditions. 
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Muralidharan et al. proposed a MPC VSL controller based on the LN-CTM model that is able to 
recover the bottleneck from capacity drop and obtain an optimal trajectory in the absence of 
capacity drop (Muralidharan and Horowitz 2015). In 2014, Frejo et al. proposed a hybrid MPC 
controller which combines VSL with ramp metering. The proposed method reduced the 
computation load of the receding horizon optimization by using genetic and exhaustive 
algorithms while achieving a good performance in simulation (Frejo et al. 2014). 

In (Khondaker and Kattan 2015), Khondaker and Kattan designed a MPC VSL controller based on 
a microscopic car following model with the assumption of a connected vehicle environment. 
The proposed method predicts traffic conditions on the microscopic level and optimizes a cost 
function which is the weighted sum of TTT and time to collision (TTC), therefore improves both 
traffic mobility and safety. The method was evaluated using a microscopic simulation model 
based on the commercial software, VISSIM. Significant improvement on travel time is 
demonstrated. However, the authors assumed that all vehicle information is available in real 
time and the vehicle states can be accurately predicted, which is very difficult, if at all possible. 

In 2013, Carlson et al. (Rodrigo C. Carlson, Papamichail, and Papageorgiou 2013) proposed two 
local feedback VSL controllers. The local feedback controllers were compared to a nonlinear 
optimal controller via macroscopic simulations. Results showed that the simple feedback 
controllers can provide similar improvement with respect to the total time spent (TTS) as the 
optimal controller by using much lower computational effort. The method is extended to 
multiple bottlenecks in (Iordanidou et al. 2015) and evaluated to be also effective in 
microscopic simulations in (Müller et al. 2015). In (H.-Y. Jin and Jin 2015), Jin and Jin proposed a 
proportional-integral (PI) VSL controller to maximize the bottleneck throughput with only one 
VSL sign by locally stabilizing the vehicle density at a critical value. Since the analysis is local 
there is no guarantee that a traffic disturbance would not lead to a capacity drop and unstable 
situation. In addition it is not clear how the design for one section can be extended to multiple 
sections upstream the bottleneck. 

In (A. Hegyi et al. 2008), Hegyi et al. proposed the SPECIALIST VSL controller strategy based on 
shockwave theory. The SPECIALIST method detects the shockwave upstream the bottleneck 
and uses VSL to make the shockwave accumulate slower and dissipate faster thus dampen the 
shockwave and improve traffic mobility. In (J. Zhang, Chang, and Ioannou 2006), a local 
feedback VSL control strategy integrated with ramp metering is proposed based on the 
fundamental diagram. An extended version of this control strategy is evaluated in (Chang et al. 
2007) with microscopic simulations. The method is shown to be able to improve freeway 
efficiency as well as be robust with respect to modeling error and measurement noise. 

The effects of VSL on traffic safety and the environment is also assessed. In (Abdel-Aty, Dilmore, 
and Dhindsa 2006), Abdel-Aty et al. showed that well-configured VSL strategies can decease the 
crash likelihood but large gaps of speed limit in time and space may increase it. No 
improvement in travel time is observed in this study. In (Li et al. 2014), a genetic algorithm was 
used to choose the control parameters in order to minimize the rear-end collision risks near 
freeway recurrent bottlenecks. With the proposed control strategy, the VSL control reduced the 
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rear-end crash potential by 69.84% for the high demand scenario and by 81.81% for the 
moderate demand scenario. (Y. Zhang and Ioannou 2016) evaluated the environmental impact 
of the VSL and LC control method proposed in (Y. Zhang and Ioannou 2015) with a microscopic 
emission model CMEM and a macroscopic one MOVES. It is shown that the environmental 
benefits are evaluated to be qualitatively similar with both models while the microscopic 
CMEM is more sensitive to transient process. 

In (Zegeye et al. 2009), a MPC VSL strategy was proposed using a car-following model to reduce 
both total time spent (TTS) and total emissions. It is shown that a reduction of TTS alone may 
not reduce the total emissions. (Khondaker and Kattan 2015) showed that in case of 100% 
penetration rates of connected vehicles, optimizing for safety alone is enough to achieve 
simultaneous and optimum improvements in all measures. However, in case of lower 
penetration rate, a higher collision risk was observed when optimizing for only mobility or fuel 
consumption. 

The aim of RM is to adjust the on-ramp flow into the mainline in order to improve the overall 
traffic condition. RM has been widely used in United States and the Europe (Horton et al. 2016; 
Caltrans 2016). ALINEA, one of the most popular RM strategies, is a heuristic local feedback 
control method with integral action (Markos Papageorgiou, Hadj-Salem, and Blosseville 1991). 

In (Oh and Sisiopiku 2001), ALINEA is expanded to MALINEA, which includes the mainline 
occupancy upstream the on-ramp in the feedback loop. MALINEA addresses two main 
disadvantages to ALINEA. The first is that although ALINEA optimizes the occupancy 
downstream of the entrance ramp, congestion can still occur upstream of the ramp. The second 
is that the optimal detector location can be difficult to determine. 

(Smaragdis and Papageorgiou 2003) proposed FL-ALINEA which includes feedback downstream 
flow rate instead of occupancy and ALINEA/Q algorithm which combines queue control with 
ALINEA. MALINEA addresses two main disadvantages to ALINEA. The first is that although 
ALINEA optimizes the occupancy downstream of the entrance ramp, congestion can still occur 
upstream of the ramp. The second is that the optimal detector location can be difficult to 
determine. Its formula is identical to the formula used for traditional occupancy-based ALINEA, 
except that it measures flow, and tries to reach a set point flow rather than a set point 
occupancy. However, when the occupancy is over the critical occupancy, the metering rate is 
set to the minimum rate, since the freeway is already over capacity. ALINEA/Q algorithm 
calculates two metering rates. The first rate is calculated exactly the same as in the traditional 
ALINEA algorithm. The second rate that is calculated is the minimum rate needed to keep the 
ramp queue at or below the maximum allowable queue length. The final calculated rate is the 
greater of either the ALINEA rate or the queue control rate. 

Some model-based RM algorithms are also developed. Coordinated ramp metering is based on 
a second order traffic flow model and an optimal control approach that decides the metering 
rates of multiple ramps in a coordinated manner (M. Papageorgiou and Kotsialos 2002). 
Coordinated ramp metering is basically a vectorization of the ALINEA equation, which uses 
vectors of occupancy, and 2 control gain matrices to return a vector of metering rates. 
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SWARM is a data-based ramp metering strategy which uses linear regression of measured data 
to predict the density (Caltrans District 7 2006). Despite the intensive application of RM, it is 
recognized that ramp metering can only control the vehicle density immediately downstream 
the on-ramp therefore barely improves the overall traffic condition in practice, especially when 
the mainstream demand is high (Lu, Qiu, et al. 2010; Scariza 2003). The above limitations of RM 
motivates the investigation of combining ramp metering with mainline traffic control strategies 
such as VSL. 

Previous efforts to study the effect of lane changes at bottlenecks and develop traffic flow 
control strategies with consideration of lane management include the following: 

In 1986, Rathi et al. (Rathi and Nemeth 1986) developed a microscopic simulation model to 
evaluate the effect of LC control in a freeway work zone at different driver compliance rate. In 
1988, Mahmassani et al. (Mahmassani and Jayakrishnan 1988) applied a macroscopic 
simulation model to evaluate lane closure strategy for planned work zone. The work in (Rathi 
and Nemeth 1986; Mahmassani and Jayakrishnan 1988) is focused on long-term lane closure 
strategies rather than temporary lane closures. 

In 1998, Schaefer et al. (Schaefer, Upchurch, and Ashur 1998) assessed the effectiveness of 
overhead lane control signals. The signals are placed at 1/2 mile intervals ahead of the highway 
incident area and indicate lane closure with red “x” symbols. A microscopic simulation using 
SLAM was used to evaluate the performance of the lane change signal on time delay. In 1999, 
Jha et al. (Jha, Cuneo, and Ben-Akiva 1999) evaluated three different lane control signal settings 
for the tunnel of I-93 South. Yellow and red overhead signals were applied ahead of incident 
location and evaluated with microscopic simulator MITSIM. The study showed that under 
incident condition, TTT is sensitive to upstream road geometry and driver compliance rate. 
Carelessly configured LC signal settings may result in increase of TTT. 

In (W.-L. Jin 2013), Jin stated that systematic lane changes can seriously deteriorate traffic 
safety and efficiency during lane drop, merge, and other types of bottleneck. The author 
introduced an entropy condition for the multi-commodity LWR model and solve the Riemann 
problem inside a homogeneous lane-changing area. In (Laval and Daganzo 2006), Laval and 
Daganzo also confirmed that lane changes at the bottleneck reduce the flow rate and result in 
capacity drop at the bottleneck. 

In recently years, researchers start to examine the combination and integration of different 
traffic flow control schemes. In (Baskar, De Schutter, and Hellendoorn 2008), Baskar et al. 
proposed a MPC approach to find optimal speed limits and lane allocations for platoons. The 
method is simulated on a 2-lane highway segment and reported to improve travel time by 5% - 
10%. It is assumed that all vehicles are controlled by road-side controllers. In 2014, Roncoli et 
al. (C. Roncoli, Papamichail, and Papageorgiou 2014) proposed a MPC-based traffic control 
strategy for multi-lane motorways, which integrates VSL, ramp metering and lane allocation. 
The authors adopted the first order flow model and treated each lane as different cells. MPC is 
designed based on a cost function which penalizes TTS, queue length on the ramps and 
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amplitude of oscillations. Simulation results show that VSL performs much better when 
combined with ramp metering and lane allocation. 

The coordination of RM and VSL involves consideration of network mobility, on-ramp queues 
and fairness between the mainline and the ramps. The objective is to keep a balanced delay 
time between vehicles on the mainline and the ramps and avoid long queues on the ramps 
from spilling back to the urban road network. Past efforts to integrate ramp metering with 
variable speed limit control include the following: (Alessandri et al. 1998; Caligaris, Sacone, and 
Siri 2007) chose the optimal VSL and RM commands based on a second order model in an open-
loop manner. (Andreas Hegyi, De Schutter, and Hellendoorn 2005) developed a combined VSL 
and RM controller by using model predictive control (MPC) based on the METANET model. 
(Papamichail et al. 2008) combined VSL and coordinated RM using an optimal control approach. 
(Lu, Qiu, et al. 2010) used a MPC approach to generate the VSL commands which coordinate 
with pre-existing RM controllers. (Lu et al. 2011) designed a MPC-based RM controller with a 
linearized first-order model which is equipped with a heuristic VSL controller. 

The design of the coordinated VSL, RM and LC controller is based on the first-order cell 
transmission traffic flow model, which during the recent years was used to develop variable 
speed limit (VSL) control strategies. In (Hadiuzzaman and Qiu 2013), Hadiuzzaman et al. 
proposed a model predictive control (MPC)-based VSL control strategy to relieve congestion 
caused by active bottleneck which introduces capacity drop. No significant improvement was 
shown in bottleneck throughput. The reason given by the authors of (Hadiuzzaman and Qiu 
2013) for the lack of improvements by the proposed VSL was that the model and data used 
were not accurate enough. In (Muralidharan and Horowitz 2015), an MPC-based coordinated 
VSL and ramp metering (RM) controller is proposed based on the link-node CTM. The VSL and 
RM control commands are computed by relaxing the receding-horizon optimization problem 
into linear programming. In (Csikós and Kulcsár 2017), the CTM model is expressed in a 
piecewise affine switching-mode form, based on which an MPC-based VSL controller is 
developed to attenuate shockwave. 

In (Gomes et al. 2008), Gomes et al. performed a thorough analysis of the equilibrium points 
and their stability properties of the CTM model. However, the authors did not take the capacity 
drop phenomenon into consideration. In addition, the convergence rate at which the system 
states converge to the equilibrium points is not specified. Reference (Lovisari et al. 2014) 
developed sufficient conditions for the stability of the equilibrium points of CTM in terms of 
connectivity of a graph associated with the traffic network. The results of (Gomes et al. 2008) 
and (Lovisari et al. 2014) are established based on the monotonicity of CTM. However, if the 
CTM is modified to account for capacity drop and the fact that the discharging flow rate of a 
congested road section decreases with density (Y. Zhang and Ioannou 2017a; Srivastava, Jin, 
and Lebacque 2015; H.-Y. Jin and Jin 2015; Kontorinaki et al. 2016), then the CTM is no longer 
monotone. A finite horizon optimal routing and flow control strategy is proposed in (Lovisari et 
al. 2014). The stability and convergence of the closed-loop system to a desired equilibrium 
however has not been established. In (Coogan and Arcak 2016), the authors analyzed the 
equilibrium points and their stability properties under feasible and infeasible demand, however 
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the capacity drop phenomenon and traffic flow control is not considered. In (Karafyllis and 
Papageorgiou 2015), sufficient conditions for global asymptotic stability and global exponential 
stability of the equilibrium points of discrete-time CTM model are developed using vector 
Lyapunov functions. In (Kontorinaki, Karafyllis, and Papageorgiou 2017), the authors proposed a 
feedback control law that guarantees the global exponential stability of the desired equilibrium 
point of the CTM model. The control input in this case is the flow rate itself. It is not clear, 
however, how to implement the flow controller with VSL control. 

The rest of this chapter is organized as follows: section Combined Variable Speed Limit and 
Lane Change Control presents the design and analysis of a combined variable speed limit (VSL) 
and lane change control. The controller is extended to be integrated with a ramp metering in 
the section Coordinated Variable Speed Limit, Ramp Metering, and Lane Change Controller. 
Section Comparison of Feedback Linearization and Model Predictive Strategies for VSL Control 
devotes to a comparison of feedback linearization and model predictive VSL controller. Section 
Stability Analysis and Variable Speed Limit Control of a Traffic Flow Model shows the stability 
analysis of the open-loop CTM and then presents the design of the VSL controller, which avoids 
the capacity drop and guarantees the global stability of the desired equilibrium point. Section 
Robust VSL Control of Cell Transmission Model with Disturbance deals with system disturbance, 
where a robust VSL controller is presented, and the last section Conclusion highlights the main 
results of this project and concludes it.  
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Combined Variable Speed Limit and Lane Change Control 

Section based on the publication: 

Y. Zhang and P.A. Ioannou, "Combined variable speed limit and lane change control for highway 
traffic," IEEE Transactions on Intelligent Transportation Systems 18.7 (2016): 1812-1823. 

Introduction 

As introduced earlier, inconsistent performance of variable speed limit and ramp metering 
controllers have been reported in existing studies. Some researchers attribute the 
inconsistencies to the highly disordered and stochastic behavior at highway bottlenecks. One of 
the main factors of the disordered behavior at highway bottlenecks is the capacity drop 
phenomenon, where the maximum achievable traffic flow rate decreases when queues form 
(Banks 1991; Hall and Agyemang-Duah 1991). Under certain speed limit, when the density at 
the vicinity of the bottleneck increases to be higher than some critical value, a queue forms 
upstream of the bottleneck which decreases the capacity of the bottleneck. Capacity drop 
makes the dynamics of the traffic flow at bottleneck highly unstable, which is difficult for VSL 
control to maintain a high flow rate. (Rodrigo C. Carlson, Papamichail, and Papageorgiou 2013) 
claims that one of the main factors that introduce capacity drop is the inefficient acceleration of 
vehicles at the bottleneck, thus by providing an acceleration section with reasonable length and 
regulating the density with VSL, capacity drop can be avoided. Such an approach however has 
the following drawbacks. First it is difficult to establish in cases of incidents and second 
enforcing an acceleration section may require reducing the flow upstream considerably. The 
method in (Muralidharan and Horowitz 2015) is developed under the assumption that the 
bottleneck never returns to capacity drop mode from free flow mode, i.e., once the VSL 
controller recovers the bottleneck from capacity drop, the capacity drop never occurs again. 
While there is no reason to doubt the reported results, our studies and observations of traffic 
show clearly that forced lane changes in close proximity to the incident or bottleneck is the 
major cause of capacity drop and once it takes place VSL control will have limited or no effect in 
improving travel time. Most likely in the reported results which show significant benefits the 
scenarios did not involve significant forced lane changes or as in the case of (Rodrigo C. Carlson, 
Papamichail, and Papageorgiou 2013) it was prevented by creating an acceleration area before 
the bottleneck. It should be intuitively clear that once the forced lane changes bring down the 
speed of vehicles in neighboring lanes there is no way for an VSL control technique to eliminate 
the capacity drop. 

In this section, we first proposed a lane change (LC) controller which can avoid or relieve the 
capacity drop at the bottleneck. Two types of VSL controller are designed to combine with the 
LC controller. The first one is an heuristic local feedback controller with integral action. The 
second one is a feedback linearization controller which is designed based on the first order cell 
transmission model. Together with a lane change controller, the feedback linearization VSL 
controller guarantees stability of the traffic flow and convergence of traffic densities to an 
equilibrium density with an exponential rate of convergence. In contrast to previous studies 
which relied on linearized models, our approach is based on feedback linearization and the 
results obtained are global. Therefore, from the macroscopic point of view the proposed VSL 
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and lane change control guarantees no capacity drop and maximum flow at the bottleneck. The 
lane change controller is based on a space model as in this case the control variable is the 
location of the lane change control commands. This location is found to depend on demand and 
number of lanes closed. The proposed combined lane change and VSL control design is 
evaluated using microscopic Monte Carlo simulations under different scenarios. The 
microscopic results generated are very consistent with the macroscopic ones and demonstrate 
consistent improvements to traffic mobility and impact on the environment for all the 
simulated scenarios. 

System Modeling 

Model of highway bottleneck 

Consider a highway segment without on-ramps and off-ramps. A bottleneck is the point with 
lowest flow capacity. Due to the bottleneck a queue of vehicles forms as traffic demand 
increases. The flow rate of the bottleneck determines the throughput of the entire highway 
segment. Therefore, the modeling of the bottleneck traffic flow is crucial to the design of an 
efficient traffic control strategy. A bottleneck can be introduced by lane drop, incident lane 
blockage, merge point or other road conditions.  

 

Figure 47. Highway Bottleneck 

Figure 47 shows a highway segment with 5 lanes. A bottleneck is introduced by an incident 
which blocks one lane. The length of the bottleneck is denoted by 𝐿b. We assume that the 
capacity of the highway segment before the incident is 𝐶. Then the ideal capacity of the 

bottleneck after the incident should be 𝐶b =
4

5
𝐶. As we can see in Figure 47, if 𝐿b is small, the 

effect of the density within 𝐿b is negligible and will not affect the bottleneck flow. The flow rate 
𝑞b at the bottleneck is determined by 𝜌d, the vehicle density of the immediate upstream 
section of the bottleneck, which is referred to as the discharging section in Figure 47. We adopt 
the assumption of triangular fundamental diagram, that is, when the value of 𝜌d is low, 𝑞b =
𝑣f𝜌d, where 𝑣f is the free flow speed. However, when 𝜌d is higher than some critical value 𝜌d,c, 
i.e., the demand of the bottleneck is higher than its capacity 𝐶b, a queue forms at the 
discharging section which propagates upstream. Forced lane changes performed by the vehicles 
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in the queue reduce the speed of flow in the open lanes. Therefore, the capacity would drop to 
𝐶′b = (1 − 𝜖)𝐶b once the queue forms (H.-Y. Jin and Jin 2015; Muralidharan and Horowitz 
2015; Kontorinaki et al. 2016). The relationship between 𝜌d and 𝑞b is shown as solid line in 
Figure 48 and is described by equation (1). 

 

Figure 48. Fundamental Diagram 

VSL configuration and cell transmission model 

As shown in Figure 49, the upstream highway segment of bottleneck is divided into 𝑁 sections. 
The lengths of different sections are expected to be similar but not necessarily identical. VSL 
signs are installed at the beginning of section 1 through section 𝑁 − 1. The speed limit in 
section 𝑁, which functions as the discharging section in Figure 47, is constant and equals 𝑣f, the 
maximum possible speed given by the fundamental diagram, which would let vehicles in open 
lanes get through the bottleneck as fast as possible, under the assumption of triangular 
fundamental diagram. 

 

Figure 49. Configuration of VSL Control System 

 
𝑞b = {

𝑣f𝜌d, 𝜌d ≤ 𝜌d,c

(1 − 𝜖)𝐶b, 𝜌d > 𝜌d,c
 

(1) 
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For 𝑖 = 1,2, … ,𝑁, we denote the length, vehicle density and the inflow rate of section 𝑖 with 𝐿𝑖, 
𝜌𝑖  and 𝑞𝑖 respectively. For 𝑖 = 1,… ,𝑁 − 1, we denote the variable speed limit in section 𝑖 with 
𝑣𝑖. The variables 𝜌𝑖 ,  𝑞𝑖,  𝑣𝑖  are all functions of time 𝑡. By conservation law, the dynamics of 
densities 𝜌𝑖  are described by the differential equations 

Under the assumption of triangular fundamental diagram, the flow rate 𝑞𝑖 can be found as 
follows: 

where 𝑑 is the demand flow of this highway segment assumed to be constant relative to the 
other variables. 𝜌j,𝑖 is the jam density of section 𝑖, at which 𝑞𝑖 would be 0. 𝑤𝑖 is the backward 

propagating wave speed in section 𝑖, 𝐶𝑖 the capacity, i.e., the maximum possible flow rate in 
section 𝑖, given by 𝐶𝑖 = 𝑣𝑖𝑤𝑖𝜌j,𝑖/(𝑣𝑖 + 𝑤𝑖). We should note that for 𝑖 = 𝑁, 𝐶𝑁 and 𝜌𝑁,c are not 

the same as 𝐶b and 𝜌d,c. When 𝜌𝑁 reaches 𝜌d,c, 𝑞b decreases but section 𝑁 still has enough 

space for vehicles in section 𝑁 − 1 to flow in. Therefore, 𝜌𝑁,c > 𝜌d,c, 𝐶𝑁 > 𝐶b. The goal of the 
VSL controller is to stabilize the system described in (1)-(3) and maximize the flow rate 𝑞b. 
According to (1), maximum 𝑞b is obtained at 𝜌𝑁 = 𝜌b, which is a discontinuity point of the 
fundamental diagram. From the macroscopic point of view, it is possible to find a VSL controller 
to maintain that 𝜌𝑁 = 𝜌d,c (H.-Y. Jin and Jin 2015). However, microscopic simulations in (Y. 

Zhang and Ioannou 2015) demonstrate that when congestion occurs at the bottleneck, the 
queue accumulates so fast that VSL control can hardly reduce the density back to 𝜌d,c, therefore 
it fails to maintain maximum flow. The reason is explained in the following subsection. 

Effects of Lane Change Control 

In order to study the effect of lane change control, we build a hypothetical highway segment as 
shown in Figure 47, which is straight, 8 km long and with 5 lanes, with the microscopic traffic 
flow simulated using the commercial software VISSIM. The VISSIM model is calibrated with 
typical freeway road geometry and driving behavior. The bottleneck is formed by an incident 
which blocks the middle lane. We investigate the relationship between the flow of the 
bottleneck 𝑞b and the density 𝜌d in the 500 m long discharging section immediately upstream 
the bottleneck under different levels of traffic demand. Figure 50 shows the relationship 
between 𝑞b and 𝜌d without any VSL control. The small blue circles describe the fundamental 
diagram in the case of lane change control. The red asterisks show the corresponding 
fundamental diagram in the absence of lane change control. The design procedure of LC 
controller is described in Design of the Lane Change ControllerDesign of the Lane Change 
Controller.  

 �̇�𝑖 = (𝑞𝑖 − 𝑞𝑖+1)/𝐿𝑖,  𝑖 = 1,2, … ,𝑁 − 1

�̇�𝑁 = (𝑞𝑁 − 𝑞b)/𝐿𝑁
 

(2) 

 𝑞1 = min{𝑑, 𝐶1, 𝑤1(𝜌j,1 − 𝜌1)}

𝑞𝑖 = min{𝑣𝑖−1𝜌𝑖−1, 𝐶𝑖, 𝑤𝑖(𝜌j,𝑖 − 𝜌𝑖)},  𝑖 = 2,3, … ,𝑁
 

(3) 



 69 

 

Figure 50. Fundamental Diagram with and without LC Control 

Observing Figure 50 ,we can see that when LC control is applied, the capacity of the bottleneck 
is around 7600 veh/h, which is achieved at 𝜌d ≈ 135 veh/mi. However, when there is no LC 
control, 𝑞b stops increasing even before 𝜌d reaches 135 veh/mi (around 𝜌d = 100 veh/mi). The 
highest flow rate is around 6300 veh/h. The reason why the flow rate in the no control case fails 
to reach higher level is demonstrated in Figure 47. When vehicles approach the incident spot 
without being aware that their lane is blocked they are forced to slow down considerably and 
change lanes. These forced lane changes at low speed cause the traffic to slow down in the 
open lanes before and after the incident leading to lower volume, while the average density of 
the discharging section, 𝜌d, is still low. Other parts of the fundamental diagram in the no 
control case fit equation (1) very well. Compared to the fundamental diagram with LC control, 
we can calibrate the parameters as, 𝜌d,c = 135 veh/mi, 𝐶b = 7600 veh/h and 𝜖 = 0.16. The 
above stated behavior of the bottleneck makes it difficult for VSL control to increase 𝑞b at the 
bottleneck, as VSL is only able to regulate the average density 𝜌d in the discharging section, but 
cannot eliminate the forced lane changes at the vicinity of the bottleneck. 

On the other hand, with the LC control, we can see that 

a) no obvious capacity drop is observed at 𝜌d = 𝜌d,c; 

b) 𝑞b at 𝜌d > 𝜌d,c is approximately linear with a negative slope 𝑤b, which represents the 
wave propagation rate; 

c) most data points scatter close to 𝜌d = 𝜌d,c. The points of high density are rare. 

These observations show that the LC controller is able to reduce the number of vehicle stops in 
the queue at bottleneck and decrease the vehicle density, which makes the system continuous 
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and easier for the VSL controller to stabilize. As a consequence of the LC control action, in the 
cell transmission model the relationship between 𝜌𝑁 and 𝑞b can be modeled as: 

where 𝜌j,d = 𝑣f𝜌d,c/𝑤b + 𝜌d,c. 

Although the lane change control is able to recover the triangular shape of the fundamental 
diagram, when the demand is higher than the capacity 𝐶b, a congestion will still occur at the 
bottleneck. Now the goal is to design a VSL controller to stabilize (2)-(4) by homogenizing the 
densities in all sections and have them converge to an equilibrium which corresponds to the 
maximum possible flow as shown in the following section. 

Design of the Lane Change Controller 

The design of LC controller includes the pattern of the LC recommendation messages and the 
length of LC controlled segment. As we will explain below the control variable for LC control is 
the location of the LC recommendation which depends on a nonlinear spatial model that we 
developed. 

Lane Change Recommendation Messages 

Suppose a general highway segment has 𝑚 lanes, with Lane 1 (Lane 𝑚) being the right (left) 
most lane in the direction of flow. We select the LC recommendation message 𝑅𝑖 for lane 𝑖, 𝑖 =
1,2, … ,𝑚 using the following rules: 

a) For 1 ≤ 𝑖 ≤ 𝑚, if lane 𝑖 is open, 𝑅𝑖 = “Straight Ahead”; 

b) For 𝑖 = 1(𝑖 = 𝑚), if lane 𝑖 is closed, 𝑅𝑖 = “Change to Left (Right)”; 

c) For 1 < 𝑖 < 𝑚, if lane 𝑖 is closed, lane 𝑖 − 1 and lane 𝑖 + 1 are both open, 𝑅𝑖 =
“Change to Either Side”; 

d) For 1 < 𝑖 < 𝑚, if lane 𝑖 is closed, lane 𝑖 − 1 (lane 𝑖 + 1) is closed but lane 𝑖 + 1 (lane 𝑖 −
1) is open, 𝑅𝑖 = “Change to Left (Right)”; 

e) For 1 < 𝑖 < 𝑚, if lane 𝑖 is closed, lane 𝑖 − 1 and lane 𝑖 + 1 are both closed, then we 
check 𝑅𝑖−1 and 𝑅𝑖+1. If 𝑅𝑖−1 = 𝑅𝑖+1, then 𝑅𝑖 = 𝑅𝑖−1 = 𝑅𝑖+1, else if 𝑅𝑖−1 ≠ 𝑅𝑖+1, 𝑅𝑖 =
“Change to Either Side”. 

Rules (1)-(5) determine the LC recommendation messages depending on the incident location. 
The 5 rules covers all incident cases and are also mutually disjoint. Therefore they are well-
defined and self-consistent. 

 
𝑞b = {

𝑣f𝜌𝑁 , 𝜌𝑁 ≤ 𝜌d,c

𝑤b(𝜌j,d − 𝜌𝑁), 𝜌𝑁 > 𝜌d,c
 

(4) 
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Length of LC Control Segment 

 

Figure 51. ξ under different traffic demands 

The control variables in the LC control case are the length of the LC control segment and the 
location of the LC recommendation. Within that segment, a LC recommendation is given at 
each section within the segment. The length of the LC controlled segment need to be long 
enough in order to provide adequate space and time for upstream vehicles to change lanes. 
Intuitively, if more lanes are closed at the bottleneck, a longer LC control distance is required. In 
addition, the capacity of the bottleneck and demand will also affect the LC control distance. On 
the other hand if the length of LC control segment is too long it may cause other problems as 
the blocked lane will appear empty to drivers inviting more lane changes in and out of the 
blocked lane which is going to deteriorate performance in terms of unnecessary maneuvers. 
We used extensive microscopic simulation studies to develop the following empirical model 
that allows us to generate the control variable 𝑑LC which is the length of the LC controlled 
section given by the following equation: 

where 𝑛 is the number of lanes closed at the bottleneck, 𝜉 a design parameter related to the 
capacity of bottleneck and the traffic demand which in our case is found to have the 
relationship shown in Figure 51. For a specific highway segment, the minimum value of 𝜉 
required under different traffic demands can be found by simulation. Since LC signs are only 
deployed at the beginning of sections, we choose the number of LC controlled sections 𝑀, as 

𝑀 = argmin |∑ 𝑙𝑖
𝑁
𝑖=𝑁−𝑀+1 − 𝑑LC|, where 𝑙𝑖 represents the length of section 𝑖. More details can 

be found in [@zhang2015combined]. Here we assume that the LC controlled segment has no 
on-ramp or off-ramps. The model (5) is empirical and more spacial than temporal despite the 
dependence of 𝜉 on demand which may be time varying. The purpose of the LC control is to ask 
drivers to start changing lanes before the incident. It is an off and on controller i.e change lanes 
or not required to change lanes. It is different than the VSL controller which is purely dynamic. 

 𝑑LC = 𝜉 ⋅ 𝑛, (5) 
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Heuristic Variable Speed Limit Controller 

Virtual Ramp Metering Strategy 

Given the LC controller is applied, VSL controller is expected to work together with LC in order 
to regulate the vehicle density at the critical value. Our first attempt to design a VSL controller 
is a non-model based heuristic one, which adopts the idea of ramp metering algorithm, ALINEA. 
ALINEA adjusts the on-ramp flow rate to keep downstream density at a desired level (Markos 
Papageorgiou, Hadj-Salem, and Middelham 1997). We generalize it to VSL control by regarding 
each highway section as the on-ramp of its downstream sections and regulating downstream 
density with VSLs. Unlike ramp metering, VSL cannot directly control the flow rate by stopping 
vehicles, therefore a multi-section structure as shown in Figure 49. Configuration of VSL Control 
System is applied to ensure control effect. The VSL controller in each section is expected to 
regulate the vehicle density of its downstream sections. The VSL control law is described as 

follows. Let 𝜂𝑖(𝑘) = ∑ 𝜌𝑗
𝑁
𝑗=𝑖 (𝑘)𝑙𝑗/∑ 𝑙𝑖

𝑁
𝑗=𝑖  denote the average vehicle density of section 𝑖 

through section 𝑁 at time step 𝑘, For each 1 ≤ 𝑖 ≤ 𝑁 − 1, the VSL command of Section 𝑖 at 
time step 𝑘 can be expressed as: 

where 𝑉𝑖(𝑘) is the speed limit command of section 𝑖 in control period 𝑘. 𝐾𝐼 is the feedback 
gain, 𝜌𝑑,𝑐 denote the critical density of the discharging section. 
In equation (6), VSL commands respond to the difference to a fixed reference density, in order 
to suppress the shockwave and keep the density in discharging section. 

Constraints on VSL commands 

To ensure safety, we apply the following constraints to VSL commands in (6). 

f) Finite Command Space. VSL commands would be hard to comply if take value from a 
continuous space. Hence, we round VSL commands 𝑉𝑖(𝑘) in (6) to multiples of 5 mi/h and 
apply lower/upper bounds to it. This makes the commands clear for drivers and adds 
dead-zone characteristics to the controller therefore avoid control chattering. 

g) Saturation of Speed Limit Variations. It is dangerous to decrease the speed limit too fast 
in both time and space. The decrease should be within some threshold 𝐶𝑣 > 0 between 
successive control periods and highway sections. We don’t bound the speed limit 
variation if the speed limit increases. In this study, 𝐶𝑣 = 10 mi/h(16km/h). 

The above described constraints can be presented as follows: 

 𝑉𝑖(𝑘) − 𝑉𝑖(𝑘 + 1) ≤ 𝐶𝑣,  1 ≤ 𝑖 ≤ 𝑁 − 1 (7) 

 𝑉𝑖(𝑘) − 𝑉𝑖+1(𝑘) ≤ 𝐶𝑣,  1 ≤ 𝑖 < 𝑁 − 1 (8) 

 𝑉min ≤ 𝑉𝑖(𝑗) ≤ 𝑉max,  1 ≤ 𝑖 ≤ 𝑁 − 1 (9) 

 𝑉𝑖(𝑘) = 𝑉𝑖(𝑘 − 1) + 𝐾𝐼[𝜌𝑑,𝑐 − 𝜂𝑖(𝑘)] (6) 
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Hence, the virtual mainline ramp metering VSL controller can be formulated as follows: 

 𝑉‾𝑖(𝑘) = 𝑉𝑖(𝑘 − 1) + [𝐾𝐼 (𝜌𝑑,𝑐 − 𝜂𝑖(𝑘))]
5
 (10) 

 �̃�𝑖(𝑘) = max{𝑉‾𝑖(𝑘), 𝑉𝑖(𝑘 − 1) − 𝐶𝑣, 𝑉𝑖−1(𝑘 − 1) − 𝐶𝑣} (11) 

 

𝑉𝑖(𝑘) = {

𝑉max, if �̃�𝑖(𝑘) > 𝑉max
𝑉min, if �̃�𝑖(𝑘) < 𝑉min
�̃�𝑖(𝑘), otherwise

 

(12) 

In (10), [⋅]5 is the operator which rounds a real number to its closest whole 5 number. In (12), 
𝑉max and 𝑉min are the upper and lower bounds of VSL commands respectively. 

Combination of VSL Control and LC Control 

As described in Design of the Lane Change Controller and Heuristic Variable Speed Limit 
Controller, the LC controller is designed based on bottleneck layout and traffic demand. The VSL 
controller takes LC controlled segment as the discharging section and deploys VSL signs at 
upstream of it to keep desired density and smooth the traffic flow. The effect of LC controller 
helps the VSL controller to be more effective in generating the desired benefits. The block 
diagram of combined VSL & LC control system is shown in Figure 52.  

 

Figure 52. System Block Diagram 
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Feedback Linearization Variable Speed Limit Controller 

In this section, we designed a feedback linearization VSL controller based on the cell 
transmission model (2)-(4).  

Desired Equilibrium Point 

 

Figure 53. Desired Equilibrium Point 

The fundamental diagram under LC control is shown in Figure 53. We consider the demand 𝑑 >
𝐶b, which may introduce congestion at the bottleneck. From the nonlinear system (2)-(4), we 
calculate the equilibrium point by setting the derivatives in (2)-(4) to be zero. Let 𝜌e =
[𝜌1

e, 𝜌2
e, … , 𝜌𝑁

e ]𝑇 and 𝑣e = [𝑣1
e, 𝑣2

e, … , 𝑣𝑁−1
e ]𝑇 denote the vector of equilibrium density and the 

corresponding equilibrium speed limits in each section respectively. The desired equilibrium 
point should be the one at which maximum possible flow rate 𝐶b is achieved and the upstream 
traffic flow is homogenized. According to the triangular fundamental diagram (4), since the 
speed limit is constant and equals 𝑣f in section 𝑁, therefore the optimum equilibrium density 
for maximum flow is 𝜌𝑁

e = 𝐶b/𝑣f. For section 2 through 𝑁 − 1, we set 

hence at the desired equilibrium point, the densities and speed limits in section 2 through 𝑁 
would be the same and the upstream traffic flow of the bottleneck is homogenized. 

Since 𝑑 > 𝐶b, we need to lower the speed limit in section 1 in order to suppress the traffic flow 
entering the controlled segment. According to (3), the equilibrium point satisfies: 

which gives 

 𝜌2
e = ⋯ = 𝜌𝑁

e = 𝐶b/𝑣f,  𝑣2
e = ⋯ = 𝑣𝑁−1

e = 𝑣f. (13) 

 𝑣1
e𝜌1

e = 𝑤1(𝜌j,1 − 𝜌1
e) = 𝐶b. (14) 

 𝜌1
e = 𝜌j,1 − 𝐶b/𝑤1,  𝑣1

e = 𝐶b𝑤1/(𝜌j,1𝑤1 − 𝐶b) (15) 
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The equilibrium point described in (14)-(15) is the desired equilibrium point which maximizes 
the flow at the bottleneck and homogenizes the upstream traffic. In addition, it minimizes the 
average travel time according to the fundamental diagram. Without loss of generality, we 
assume the length of all sections are the same and equal to unit length. The system (2)-(4) can 
be expressed as follows: 

In (16), the only switching point is 𝜌𝑁 = 𝜌d,c. This is consistent with real-world, since the 

capacities of upstream sections are much larger than 𝐶b. As long as system (16) converges to 
the desired equilibrium point, the steady-state bottleneck flow is maximized and upstream 
traffic is homogenized. 

Feedback Linearization VSL Controller 

For the design and analysis of the VSL controller, we define the deviations of the state of (16) 
from the desired equilibrium (13)-(15) by defining the error system as: 𝑒𝑖 = 𝜌𝑖 − 𝜌𝑖

e for 𝑖 =
1,2, , … , 𝑁 and 𝑢𝑖 = 𝑣𝑖 − 𝑣𝑖

e for 𝑖 = 1,2, … ,𝑁 − 1. Substitute into (16), we have 

The transformation of (16) to (17) shifts the non zero equilibrium state of (16) to the zero 
equilibrium point of (17). The nonlinear terms in (17) are 𝑢𝑖𝜌𝑖 for 𝑖 = 1,2, . . . , 𝑁 − 1. Now the 
problem is to select 𝑢1 through 𝑢𝑁−1 in order to stabilize system (17) and force all the errors or 
deviations from the equilibrium state to converge to zero. 

We introduce the following feedback controller which ‘kills’ all nonlinearities and forces the 
closed loop system to be linear, an approach known as feedback linearization. We choose 

 �̇�1 = 𝑤1(𝜌j,1 − 𝜌1) − 𝑣1𝜌1
�̇�𝑖 = 𝑣𝑖−1𝜌𝑖−1 − 𝑣𝑖𝜌𝑖, for 𝑖 = 2,… ,𝑁 − 1

�̇�𝑁 = {
𝑣𝑁−1𝜌𝑁−1 − 𝑣f𝜌𝑁 , 𝜌𝑁 ≤ 𝜌d,c

𝑣𝑁−1𝜌𝑁−1 − 𝑤b(𝜌j,b − 𝜌𝑁), 𝜌𝑁 > 𝜌d,c

 

(16) 

 �̇�1 = −𝑤1𝑒1 − 𝑣1
𝑒𝑒1 − 𝑢1𝜌1 

�̇�𝑖 = 𝑣𝑖−1
𝑒 𝑒𝑖−1 + 𝑢𝑖−1𝜌𝑖−1 − 𝑣𝑖

𝑒𝑒𝑖 − 𝑢𝑖𝜌𝑖  

for 𝑖 = 2,… ,𝑁 − 1 

�̇�𝑁 = {
𝑣𝑁−1
𝑒 𝑒𝑁−1 + 𝑢𝑁−1𝜌𝑁−1 − 𝑣f𝑒𝑁 , 𝑒𝑁 ≤ 0

𝑣𝑁−1
𝑒 𝑒𝑁−1 + 𝑢𝑁−1𝜌𝑁−1 + 𝑤b𝑒𝑁,        𝑒𝑁 > 0

 

(17) 

 𝑢𝑖 = (−𝑣𝑖
e𝑒𝑖 − 𝜆𝑖𝑒𝑖+1)/𝜌𝑖,for 𝑖 = 1,… ,𝑁 − 2

𝑢𝑁−1 =

{
 
 

 
 −𝜆𝑁−1𝑒𝑁 − 𝑣𝑁−1

e 𝑒𝑁−1 + 𝑣f𝑒𝑁
𝜌𝑁−1

, 𝑒𝑁 ≤ 0

−𝜆𝑁−1𝑒𝑁 − 𝑣𝑁−1
e 𝑒𝑁−1 − 𝑤b𝑒𝑁
𝜌𝑁−1

, 𝑒𝑁 > 0

 

(18) 
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where 𝜆𝑖 > 0 for 𝑖 = 1,… ,𝑁 − 1 are design parameters. This is a switching controller, whose 
switching logic is based on the value of 𝑒𝑁. Since we avoid the capacity drop by applying the LC 
control, the controller is continuous at the switching point. With the feedback linearization 
controller (18) the closed loop system becomes: 

The stability properties of the closed loop system (19) are described by the following Theorem. 

Theorem 1.1. The equilibrium point 𝑒𝑖 = 0, 𝑖 = 1,2, … ,𝑁 of the system (19) is isolated and 
exponentially stable. The rate of exponential convergence depends on the control design 
parameters 𝜆𝑖, 𝑖 = 1,2, … ,𝑁 − 1. 

Proof For 𝑖 = 1,2, … ,𝑁, setting �̇�𝑖 = 0 in (19), the only equilibrium point is 𝑒𝑖 = 0. From (19), 
we can see that the state 𝑒𝑁 is decoupled from other states, i.e., �̇�𝑁 = −𝜆𝑁−1𝑒𝑁., whose 
solution is 

Since exp(−𝜆𝑁−1𝑡) > 0 for all 𝑡, 𝑒𝑁(𝑡) and 𝑒𝑁(0) have the same sign for all 𝑡 > 0, i.e., if 
𝑒𝑁(0) ≤ 0, then 𝑒𝑁(𝑡) ≤ 0, if 𝑒𝑁(0) > 0, then 𝑒𝑁(𝑡) > 0 for all 𝑡 > 0. In other words 𝑒𝑁 is 
either non increasing or non decreasing which means that the state 𝑒𝑁 will not switch between 
𝑒𝑁 ≤ 0 and 𝑒𝑁 > 0. Therefore, the dynamics of state 𝑒𝑁−1 can be written as 

�̇�𝑁−1 = {
−𝜆𝑁−2𝑒𝑁−1 − 𝜆𝑁−1𝑒𝑁 + 𝑣f𝑒𝑁 , 𝑒𝑁(0) ≤ 0

−𝜆𝑁−2𝑒𝑁−1 − 𝜆𝑁−1𝑒𝑁 − 𝑤b𝑒𝑁 , 𝑒𝑁(0) > 0
 

Let us define 𝑒 = [𝑒1, 𝑒2, … , 𝑒𝑁]
𝑇, then the system (19) can be written in the compact form 

where 

𝐴𝑖 =

[
 
 
 
 
−𝑤1 𝜆1

−𝜆1 𝜆2
⋱ ⋱

−𝜆𝑁−2 −𝜆𝑁−1 + 𝛽𝑖
−𝜆𝑁−1 ]

 
 
 
 

,  𝑖 = 1,2 

and 𝛽1 = −𝑤b, 𝛽2 = 𝑣f. 𝐴1 and 𝐴2 are both upper triangular matrices with all diagonal entries 
being negative real numbers, i.e., 𝐴1, 𝐴2 are both Hurwitz. Hence, system (21) is exponentially 
stable. Therefore (19) is also exponentially stable. In addition, for a given sign of 𝑒𝑁(0) there is 
no switching taking place in (21). 

 �̇�1 = −𝑤1𝑒1 + 𝜆1𝑒2
�̇�𝑖 = −𝜆𝑖−1𝑒𝑖 + 𝜆𝑖𝑒𝑖+1,for 𝑖 = 2… ,𝑁 − 2

�̇�𝑁−1 = {
−𝜆𝑁−2𝑒𝑁−1 − 𝜆𝑁−1𝑒𝑁 + 𝑣f𝑒𝑁 , 𝑒𝑁 ≤ 0
−𝜆𝑁−2𝑒𝑁−1 − 𝜆𝑁−1𝑒𝑁 − 𝑤b𝑒𝑁, 𝑒𝑁 > 0

�̇�𝑁 = −𝜆𝑁−1𝑒𝑁

 

(19) 

 𝑒𝑁(𝑡) = 𝑒𝑁(0)exp(−𝜆𝑁−1𝑡),  ∀𝑡 > 0. (20) 

 
�̇� = {

𝐴1𝑒, 𝑒𝑁(0) ≤ 0

𝐴2𝑒, 𝑒𝑁(0) > 0
 

(21) 
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The rate of convergence to the equilibrium depends on the design parameters 𝜆𝑖, 𝑖 =
1,2, . . . . 𝑁 − 1 which can be tuned to achieve a desirable convergence rate. It would also 
depend on the sign of the initial condition 𝑒𝑁(0) as the dynamics that drive the error system 
depend on whether the initial condition 𝑒𝑁(0) is negative or positive. Q.E.D. 

The feedback linearization controller (18) is continuous in time. To apply it on real highway, we 
discretize the controller and apply the constraints described in Constraints on VSL commands. 

Let 𝑢𝑖(𝑘) denotes 𝑢𝑖  computed by equation (18) at 𝑡 = 𝑘𝑇c. We have, 

 𝑣‾𝑖(𝑘) = [𝑣𝑖
e + 𝑢𝑖(𝑘)]5 (22) 

 �̃�𝑖(𝑘) = max{𝑣‾𝑖(𝑘), 𝑣𝑖(𝑘 − 1) − 𝐶v, 𝑣𝑖−1(𝑘) − 𝐶v} (23) 

 

𝑣𝑖(𝑘) = {

𝑣max, if �̃�𝑖(𝑘) > 𝑣max
𝑣min, if �̃�𝑖(𝑘) < 𝑣min
�̃�𝑖(𝑘), otherwise

 

(24) 

for 𝑖 = 1,2, … ,𝑁 − 1, 𝑘 = 0,1,2, …. 

The above modifications will influence the ideal performance of the VSL controller described by 
Theorem 1. Such modifications are necessary in every control application (Y. Wang and Ioannou 
2011b; Lu, Varaiya, et al. 2010; Rodrigo Castelan Carlson, Papamichail, and Papageorgiou 2011) 
and the way to deal with possible deterioration from the ideal performance is to use the design 
parameters 𝜆1, 𝜆2, … , 𝜆𝑁−1 to tune the system using intuition and practical considerations. The 
selection of the feedback gains 𝜆1, 𝜆2, … , 𝜆𝑁−1 has to consider the trade off between stability 
and robustness with respect to modeling errors. 

Robustness with respect to varying demands 

In the analysis above, we assume that the demand 𝑑 is a constant and 𝑑 > 𝐶b. As explained 
below, the proposed VSL controller is robust with respect to different demands. 

If 𝑑 < 𝐶b, vehicles in the controlled segment would discharge and the densities in each section 
would be lower than the desired density. The VSLs in each section would increase, but 
saturated at 𝑣f. This situation is easy as due to the low demand congestion can be avoided or 
managed very well. 

When 𝑑 > 𝐶b and keeps increasing, according to Theorem 1.1, the controller lowers the speed 
limit in section 1 and limits the number of vehicles that enter the downstream network. 
Therefore, a queue would be created whose size will be increasing upstream the flow. It 
appears, at first glance, as if we are moving congestion from the sections under VSL and LC 
control to upstream sections. The important question we need to answer is how many vehicles 
there are in this queue and how fast it grows with and without VSL and LC control in the 
sections under consideration. 
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In order to analyze the queue size upstream of section 1, we modify the system (2)-(4) by 
introducing a new state 𝑄, which represents the number of vehicles in the queue upstream 
section 1. We assume that 𝑄 = 0 at steady state flow before the incident. Using the flow 
conservation equation, we have 

where 𝑑 is the traffic demand. The inflow rate of section 1, 𝑞1 then becomes 

Equation (26) assumes that as long as the queue upstream section 1 is not fully discharged, the 
inflow rate of section 1 will be as high as the maximum flow rate that section 1 can receive 
under current 𝜌1. Note that the introduction of 𝑄 does not make any difference to system (2)-
(4) before and during the incident. It only tracks the growth and discharge of the queue 
upstream section 1. Therefore the stability of the closed-loop system (19) is not affected. 

Hence, with the combined VSL and LC controller, the queue size is measured with 𝑄. In the no 

control case, a queue forms at section 𝑁, whose size is denoted by �̂�. The following Lemma 
holds. 

Lemma 1.1. If the demand 𝑑 > 𝐶b, �̂� grows faster than 𝑄 at steady state. In particular, 

Proof Similar to Equation (25), we can estimate �̂� with the following equation �̇̂� = 𝑑 − �̂�b, 

where �̇̂� is the growth rate of �̂�, �̂�b is the outflow rate of section 𝑁 without control. Since 𝑑 >
𝐶b, 𝑞1 converges according to Theorem 1.1 to the desired flow rate 𝐶b exponentially with the 
combined VSL and LC controller. �̂�b would decrease to �̂�b = (1 − 𝜖)𝐶b due to capacity drop. 
Substituting the steady state values of 𝑞1 and �̂�b in the above equations we obtain (27), i.e., at 

steady state, the growth rate of 𝑄 is less than that of �̂�. Q.E.D. 

From the analysis above, it is clear that if the demand 𝑑 increases from below the bottleneck 
capacity 𝐶b to greater than 𝐶b and keeps increasing, the combined VSL and LC controller is able 
to protect the bottleneck from getting congested by suppressing the speed limit in section 1 
therefore 𝜌𝑁 can be stabilized at the desired value. On the other hand, in the no control case, 
the bottleneck is directly exposed to the excessive demand, therefore 𝜌𝑁 increases and leads to 
capacity drop. Figure 54 plots the steady state bottleneck flow 𝑞b with respect to demand 𝑑. 
When 𝑑 < 𝐶b, the bottleneck would not be congested. When 𝑑 > 𝐶b, the bottleneck flow 
would be stabilized at the maximum value 𝐶b by the combined controller in the controlled case. 
In the no control case, the flow rate would decrease to (1 − 𝜖)𝐶b due to capacity drop. 

 �̇� = 𝑑 − 𝑞1 (25) 

 
𝑞1 = {

min{𝑑, 𝐶1, 𝑤1(𝜌j,1 − 𝜌1)},  𝑄 ≤ 0

min{𝐶1, 𝑤1(𝜌j,1 − 𝜌1)},  𝑄 > 0
 

(26) 

 �̇� − �̇̂� = −𝜖𝐶b < 0 (27) 
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Therefore, the combined VSL and LC controller is robust with respect to different levels of 
traffic demand. The queue of vehicles grows slower in the controlled case than in the case with 
no control. 

 

Figure 54. Steady State q_"b" under Different Demands — With Control, - - -Without Control 

Numerical Results 

Simulation Network 

We evaluate the combined VSL & LC control method using a microscopic and macroscopic 
model of the traffic flow on a 10 mile (16 km)-long southbound segment of I-710 freeway in 
California, United States (between I-105 junction and Long Beach Port), which has a static 
speed limit of 65 mi/h (105 km/h). We build this freeway network in VISSIM and calibrate the 
microscopic model using historical data provided by (Transportation 2015). The car following 
and lane change behavior of the VISSIM model is calibrated and validated using real 
measurements under static speed limit of 65 mi/h. 

 

Figure 55. Simulation Network 
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The studied highway segment has 3-5 lanes at different locations. As shown in Figure 55, we 
assume the bottleneck is introduced by an incident which blocked one lane. The upstream 
segment of the bottleneck is divided to 10 500m-600m sections. The bars across the highway in 
Figure 55 are where VSL signs and LC signs deployed. In VISSIM, incidents are simulated by 
placing stopped bus in certain lane. 

Evaluation of the Heuristic VSL Controller 

This section demonstrates the evaluation results of the heuristic VSL controller. 

Monte Carlo Simulation and Scenarios 
In this case, we load the network with a demand of 6500 veh/h, 30% of which are trucks. This 
proportion is much higher than that in reality. We use this setup to test the performance on 
extremely high truck volume. To verify that the proposed control method generates consistent 
results under different traffic conditions, we set up 3 different scenarios on the highway 
network to perform a general evaluation of the proposed method and take 10 sets of Monte 
Carlo simulation for each scenario. The final performance measurements are averages of the 
Monte Carlo simulation results. In the simulation, all lanes are open at the beginning of 
simulation. 20 min after simulation begins, certain lane is closed near the incident spot in Figure 
55 and the controller is activated. The simulation terminates when 2000 vehicles pass through 
the bottleneck. We fix the total number of vehicles that passed through the bottleneck in each 
simulation, so that the measurements are comparable. Other configuration of scenarios are 
listed in Table 9. 

Table 9. Simulation Scenarios 

Scenario No. Total No. of Lanes Bottleneck 

Pattern 

1 3 Lane 2 Closed 

2 3 Lane 3 Closed 

3 4 Lane 3 Closed 

Performance Measurements 

We introduce the following measurements to evaluate the performance of the proposed 
control method. To be precise, all measures start from the time instant of lane closing and 
terminate with the simulation. 

Control effects on traffic mobility are evaluated by total travel time (TTT) of all vehicles that 
passed through the highway network (in hours). Let 𝑡𝑖,in and 𝑡𝑖,out denote the time instant 

vehicle 𝑖 enters and exits the network respectively. TTT is given by 𝑇𝑇𝑇 = ∑ (𝑡𝑖,out − 𝑡𝑖,in)
2000
𝑖=1 . 

Control effects on traffic safety are evaluated by total number of stops 𝑠tot = ∑ 𝑠𝑖
2000
𝑖=1  and total 

number of lane changes 𝑐tot = ∑ 𝑐𝑖
2000
𝑖=1 , 
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where 𝑠𝑖, 𝑐𝑖 are number of stops and lane changes performed by vehicle 𝑖 respectively. 

For environmental impact, we measure fuel consumption rate 𝑓𝑟 = ∑ 𝑓𝑖
2000
𝑖=1 /(2000 ⋅ ∑ 𝑑𝑖

2000
𝑖=1 ) 

where 𝑓𝑖, 𝑑𝑖 are the fuel consumption and distance traveled in the network by vehicle 𝑖 
respectively. The definition of CO2 emission rate 𝐸CO2  and NOx emission rate 𝐸NOx

 are similar to 

𝑓𝑟. 

Controller Parameters 

In our simulation, the default speed limit when VSL controller is not active is 𝑉𝑓 = 65mi/h. VSL 

decrease threshold 𝐶𝑣 = 10mi/h (16km/h). Bounds of VSL 𝑉min = 30mi/h (48km/h), 𝑉max =
65mi/h. Feedback gain 𝐾𝐼 = 2. 

 

Figure 56. Traffic Condition in Discharging Section 

Simulation Results  

In scenario 1-3, we compare the simulation results under the following control modes: 1) No 
control; 2) LC control only; 3) VSL control only; 4) Combined VSL & LC control. 

Figure 56 show the density of discharging section and the bottleneck flow rate during the 
simulation in scenario 1. After the incident happens at 1200s, the density of discharging section 
increase dramatically to 250 veh/km and the bottleneck flow rate drops by 50% if LC control is 
not applied. When VSL control is applied alone, the density of discharging section increases 
slower however cannot be kept at a lower level. When LC control is applied, the bottleneck flow 
rate only deceased by about 30%. Since we lose 1 lane out of 3, the flow rate per lane has no 
drop. LC control ensures a high discharging rate of the bottleneck therefore avoids the 
congestion. Comparing the flow rate and density curve with and without VSL control, system 
oscillation is damped by VSL, therefore traffic safety improved. Fuel consumption and emissions 
also tend to be reduced, which is shown below. 

The effects of different control mode on performance measurements defined in Evaluation of 
the Heuristic VSL Controller are shown in Table 10–Table 12. We can observe that the 
combined control method provides significant improvement on each measurement, which is 
also consistent with respect to different scenarios. The combined VSL & LC control strategy 
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reduces 𝑇𝑇𝑇 by 26%-32%, 𝑠tot by about 90%, 𝑐tot by 3%-14%, 𝑓𝑟 and 𝐸CO2  by 16%-24%, 𝐸NO𝑥  by 

16%-21%.  

To study the roles of VSL control and LC control in the combined control strategy respectively, 
we also analyze the case VSL control and LC control are applied to the traffic system alone. LC 
control considerably decreases travel time and number of stops, but cannot reduce number of 
lane changes, since it only spreads forced lane changes along the LC controlled sections, instead 
of avoiding them. On the other hand, VSL control homogenizes the density and speed in each 
section. Drivers are not tend to change lane if densities and speeds are similar in all lanes, 
therefore VSL control reduces number of lane changes in VSL controlled sections. This is very 
important for traffic safety in truck-dominant highways. Trucks not only take long time and 
large space to change lane, their large size also blocks the eye sight of drivers, which makes 
lane change much more dangerous than usual.
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Table 10. Performance Measurements of Scenario 1 

Performance 

Measurement 

Cars   Trucks  

No 

Control 

LC Percentage 

Changed 

VSL Percentage 

Changed 

VSL+LC Percentage 

Changed 

No 

Control 

LC Percentage 

Changed 

VSL Percentage 

Changed 

VSL+LC Percentage 

Changed 

Travel Time 

(min) 

29561 20486 -31% 29780 1% 20574 -30% 9539 6925 -27% 9447 -1% 7047 -26% 

No. of Stops 27503 3007 -89% 25721 -6% 3099 -89% 6757 719 -89% 6344 -6% 783 -88% 

No. of LC 12344 12089 -2% 11134 -10% 10630 -14% 1245 1314 6% 1094 -12% 1142 -8% 

Fuel 

(g/mi/veh) 

141.46 120.76 -15% 130.78 -8% 109.64 -22% 599.24 582.77 -3% 520.60 -13% 505.71 -16% 

CO2 

(g/mi/veh) 

422.40 354.76 -16% 394.44 -7% 325.56 -23% 1917.86 1864.23 -3% 1665.80 -13% 1617.36 -16% 

NOx 

(g/mi/veh) 

0.49 0.47 -4% 0.42 -15% 0.39 -20% 22.10 20.38 -8% 20.03 -9% 18.65 -16% 
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Table 11. Performance Measurements of Scenario 2 

Performance 

Measurement 

Cars   Trucks   

No 

Control 

LC Percentage 

Changed 

VSL Percentage 

Changed 

VSL+LC Percentage 

Changed 

No 

Control 

LC Percentage 

Changed 

VSL Percentage 

Changed 

VSL+LC Percentage 

Changed 

Travel Time 

(min) 

29076 19914 -32% 28403 -2% 19854 -32% 9273 6862 -26% 9280 0% 6842 -26% 

No. of Stops 23889 2541 -89% 22464 -6% 2321 -90% 7206 573 -92% 6665 -7% 535 -93% 

No. of LC 12404 12944 4% 11254 -9% 11585 -7% 1354 1543 14% 1233 -9% 1373 1% 

Fuel 

(g/mi/veh) 

141.60 120.67 -15% 128.50 -9% 109.67 -23% 599.35 582.86 -3% 516.70 -14% 502.49 -16% 

CO2 

(g/mi/veh) 

421.32 353.24 -16% 386.03 -8% 323.71 -23% 1918.83 1864.56 -3% 1653.81 -14% 1607.09 -16% 

NOx 

(g/mi/veh) 

0.50 0.48 -5% 0.42 -17% 0.41 -19% 22.22 20.37 -8% 19.94 -10% 18.56 -16% 

Table 12. Performance Measurements of Scenario 3 

Performance 

Measurement 

Cars Trucks 

No 

Control 

LC Percentage 

Changed 

VSL Percentage 

Changed 

VSL+LC Percentage 

Changed 

No 

Control 

LC Percentage 

Changed 

VSL Percentage 

Changed 

VSL+LC Percentage 

Changed 

Travel Time 

(min) 

30033 20378 -32% 30033 0% 20426 -32% 9524 6938 -27% 9650 1% 6914 -27% 

No. of Stops 27544 2797 -90% 25763 -6% 2681 -90% 6729 695 -90% 6568 -2% 650 -90% 

No. of LC 12475 12380 -1% 11295 -9% 11084 -11% 1276 1331 4% 1152 -10% 1162 -9% 

Fuel 

(g/mi/veh) 

143.37 120.71 -16% 132.38 -8% 110.05 -23% 601.58 583.50 -3% 523.66 -13% 506.20 -16% 

CO2 

(g/mi/veh) 

427.21 354.32 -17% 398.29 -7% 326.01 -24% 1925.31 1866.57 -3% 1675.56 -13% 1618.96 -16% 

NOx 

(g/mi/veh) 

0.51 0.47 -6% 0.43 -15% 0.40 -21% 22.16 20.40 -8% 20.12 -9% 18.67 -16% 
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The environmental evaluation is interesting. VSL and LC control has different performance on 
different measurements and vehicle types. For trucks, 𝑓𝑟 and 𝐸CO2  are highly sensitive to 

accelerations. Large portion of fuel consumption and CO2 emission are produced by speeding 
up and down in shock waves. Therefore, although LC control reduced the travel time of trucks 
by 26%-27%, 𝑓𝑟 and 𝐸CO2  of trucks are only reduced by 3%. On the other hand, VSL control 

suppresses the shockwave and smooth the speed of all vehicles, which reduce 𝑓𝑟 and 𝐸CO2  of 

trucks by 13%-14%. 

For cars, 𝑓𝑟 and 𝐸CO2  are not as sensitive to accelerations as those of trucks. Engine efficiency, 

which increases with speed, is also a major factor. LC Control significantly increases the average 
speed and engine efficiency of cars, therefore decrease𝑓𝑟 and 𝐸CO2  of cars by 15%-17%. In the 

meantime, VSL control also reduce 𝑓𝑟 and 𝐸CO2  of cars by 7%-9%. 

NOx is major toxic road traffic emission. Since we assume cars are all gasoline-based, the NOx 
emission of cars is very small comparing to that of trucks. Both VSL control and LC control have 
contributions on reduction of NOx. 

From the simulation results and analysis above, combined VSL & LC control method can 
improve the bottleneck flow rate, smooth and homogenize the traffic flow simultaneously, 
hence is able to provide significant and consistent improvement on traffic mobility, safety and 
environmental impact in truck-dominant highway networks. 

Evaluation of the Feedback Linearization VSL Controller 

In this section, we design and evaluate a combined VSL and LC controller for the simulation of a 
real world highway segment. We use both macroscopic and microscopic traffic flow models and 
carry out Monte Carlo simulations for different incident scenarios in order to evaluate 
consistency with respect to performance improvements. 

Simulation Network and Scenarios 

We use the same network in Figure 55 to evaluate the performance of the feedback 
linearization VSL controller. To demonstrate the performance, robustness and consistency of 
the proposed controller under different incident conditions, we consider 3 different scenarios 
with different incident durations. We simulate each scenario under different demand flows. In 
each scenario, the incident occurs 5 minutes after simulation begins and lasts for 30 min in 
scenario 1, which simulates the case of an incident of moderate duration which may be due to 
an accident; for 10 min in scenario 2 which simulates the case of a short incident due to a 
vehicle breakdown or minor accident. The incident is not removed after occurrence in scenario 
3, which simulates a long time lane closure or a construction site or a physical bottleneck. We 
evaluate the combined VSL and LC control performance for each scenario with constant 
demand flows of 6000 veh/h and 6500 veh/h which is higher than the capacity of the 
bottleneck. 5% of the demand are trucks. 
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Macroscopic Simulation 

In this section, we use a macroscopic model to evaluate the performance of the proposed VSL 
controller. Since the macroscopic model used does not take into account lane changes and their 
effect close to the incident, we apply the LC controller to the corresponding microscopic model 
and use the microscopic model data to validate the macroscopic cell transmission model. The 
desired equilibrium point of the I-710 highway segment is calculated to be 

𝜌1
e = 174.6 veh/mi,  𝜌2

e = 𝜌3
e = ⋯ = 𝜌10

e = 90 veh/mi

𝑣1
e = 33.5 mi/h, 𝑣2

e = 𝑣3
e = ⋯ = 𝑣9

e = 65 mi/h
 

The LC recommendation sign is deployed at the beginning of section 9 and section 10 in Figure 
55, and recommends vehicles to change lanes by moving to the open lanes on either side. For 
the VSL controller, the following parameters are used: 𝐶v = 10 mi/h, 𝑣max = 65 mi/h, 𝑣min =
10 mi/h, 𝑇c = 30 s. We choose 𝜆1 = 𝜆2 = ⋯ = 𝜆9 = 20. We should note that as mentioned in 
Simulation Network, the capacity of the bottleneck with incident is 4500 veh/h. However, in the 
macroscopic model, we are assuming a strict triangular fundamental diagram and the capacity 
𝐶b is calibrated to be 𝑣f × 𝜌10

e  = 5850 veh/h. The reasons for this difference are explained in the 
following section. Since the logic of our VSL controller is to stabilize the density at the critical 
value, the accurate value of equilibrium density is more important than the value of flow rate. 
The densities and variable speed limits for the case of scenario 1 with demand 𝑑 = 6500 veh/h 
are plotted in Figure 57. For clarity of presentation, we only plot the densities in section 1, 9 
and 10 and VSL commands in section 1 and 9. 

 

Figure 57. Controller Performance without Constraints 

Figure 57 demonstrates what is predicted by theory. That is the density in section 1 converges 
to the desired density of 174.6 veh/mi and the densities in sections 9, 10 to the desired density 
of 90 veh/mi till the incident is removed at 𝑡 = 35 min, in which case the densities converge to 
105 veh/h, which is higher than the pre-incident value. This is because the queue formed at 
section 1 during the incident needs to discharge, therefore the temporary demand of the 
bottleneck after the incident is higher than the demand of the overall network. 
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We then apply the constraints (22)-(24) to the VSL controller. The densities and VSL commands 
with constraints are shown in Figure 58. Figure (a) in Figure 58 demonstrates that the density in 
the discharging section converges to 𝜌10 = 85 veh/mi, which is lower than 𝜌10

e = 90 veh/mi. 
According to the fundamental diagram in Figure 53, the steady state flow would be a bit lower 
than the desired flow rate. However, the difference is negligible. The VSL command in section 1 
converges to 𝑣1 = 30 mi/h and the VSL command in section 9 converges to 𝑣9 = 55 mi/h, 
which are not exactly the same as the desired values due to the application of the constraints. 

 

Figure 58. Controller Performance with Constraints 

In Figure 57, 𝜌9 and 𝜌10 converge to the corresponding equilibrium point in less than 10 min 
while 𝜌1 converges to 𝜌1

e much slower (in about 20 min). The reason of this phenomenon is the 
different values of 𝜌1

e and 𝜌9
e. As discussed in [@carlson2011local], a low value of speed limit 

would suppress the capacity of the section. After the incident occurs, 𝑣1 decreases to a low 
value and 𝜌1 increases rapidly, since because of the outflow of section 1, 𝑞2 is suppressed by 
𝑣1. Then the process of adjusting 𝜌1 from the overshoot to 𝜌1

e takes long time due to the low 
level of 𝑞2. 

On the other hand, from Figure 58, we can see that with the constrained VSL, 𝜌1 converges fast 
and no overshoot is observed. This is because 𝑣1 is constrained (22)-(24) thus fails to adjust 𝜌1 
back to 𝜌1

e after overshooting, however, as stated before, the difference is negligible. Similarly, 
in Figure (b) in Figure 58 , the VSL command 𝑣1 converges to 30 mi/h in less than 10 min and 
stays at that value. Since the VSL commands only take whole 5 mi/h values due to (22), small 
variation of 𝑣1 in the continuous case are all rounded up. Therefore, in the constrained case, 
there are no variations of 𝑣1 around 30 mi/h. 

Figure 59 (a) demonstrates how vehicle densities evolve in scenario 1 without any control. The 
density increases dramatically in the discharging section to 370 veh/h and propagates 
upstream. Even after the incident is removed at 𝑡 = 35 min, the shockwave continues 
propagating backwards and takes longer time to discharge. Figure 59 (b) shows the flow rate at 
the bottleneck with and without control. During the incident, the flow rate decreases to less 
than 3000 veh/h due to capacity drop in the case of no control, while the bottleneck flow 
converges to 5600 veh/h with the combined VSL and LC controller. Again, the flow rate under 
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control is higher than the real capacity of the bottleneck due to the assumption of triangular 
fundamental diagram. 

 

Figure 59. System Behavior without Control 

We use scenario 1 to examine the growth of the queue at the entrance to the controlled 
network. The numbers of vehicles in the queues are plotted in Figure 60 with respect to the 
time 𝑡. When the demand 𝑑 = 6500 veh/h, the maximum number of vehicles in the queue is 
1700 in the case of no control, while the number is less than 500 in the control case, which 
demonstrates that the combined VSL and LC controller reduces the queue size significantly. The 
queues grow slower and discharge faster with lower demand, as less vehicles arrive at the tail 
of the queue. 

 

Figure 60. Growth and Discharge of the Queue 

Microscopic Simulation 

In this section, we use a microscopic traffic model that is closer to the real environment in order 
to confirm the improvements predicted by theory and demonstrated by the macroscopic 
model. In addition, the microscopic model allows us to evaluate additional performance criteria 
such as number of stops and lane changes that affect safety as well as the environmental 
impact of VSL and LC controllers. We simulate the I-710 traffic flow network shown in Figure 55 
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for the above mentioned 3 traffic scenarios. The simulated demand consists of 85% light duty 
passenger vehicles and 15% trucks. This ratio represents the highest truck ratio at peak hours 
on I-710, therefore shows the worst traffic condition (Transportation 2015). To show 
consistency of the results, we conducted 10 sets of Monte-Carlo simulations with different 
random seeds for each scenario. The curves in Figure 61 are generated from a single simulation. 
The evaluation results in Table 13–Table 15 are the average of 10 simulations. 

Consistency between microscopic and macroscopic models 

Figure 61 shows the density and flow rate of the discharging section in both microscopic and 
macroscopic simulations. We can see that the density curve in macroscopic and microscopic 
simulations match each other. The microscopic flow rates in the no control cases are very 
similar and consistent with those in macroscopic simulations. However, when the combined 
VSL and LC controller is applied, the flow rates in microscopic simulations are lower than those 
in macroscopic simulations, which means that the flow speed in the discharging section in 
microscopic simulations is lower than what we get from the macroscopic model. 

The deviation in speed is due to the following factors: 

1. Modeling error. In the macroscopic model, we use a simplified triangular fundamental 
diagram to model the discharging section, which implies that the flow speed at the 
desired density is 𝑣f. However, the actual speed would be lower than 𝑣f. Especially when 
the LC controller is applied, drivers are usually conservative when merging to the open 
lanes. 

2. Speed limit following delay. In the macroscopic model, we assume that the flow speed 
follows the speed limit exactly with no delay. However, in the microscopic model, the 
traffic flow needs time and space to accelerate to the desired speed limit. When 
vehicles change lanes, they do not adjust to new speeds instantaneously. 

3. Friction effect. The friction effect reflects the empirically observed drivers’ fear of 
moving fast in the open lanes when an incident or slowly moving vehicles exist in 
neighboring lanes [@wright2015new]. In microscopic simulation, this phenomenon is 
captured and has an effect when compared with the macroscopic simulations. 

Figure 62 demonstrates the relationship between 𝜌10 and 𝑞𝑏 at the equilibrium state under the 
combined VSL and LC controller in microscopic simulations. In Figure 62, the negative slope 
part, i.e., the congested part of the fundamental diagram is not observed even when the 
demand 𝑑 is higher than the capacity, since the controller protects the bottleneck from getting 
congested. For different levels of demand, the data points concentrate in different clusters 
which shows that the controller homogenizes the traffic flow. Furthermore, when 𝑑 ≤ 3000 
veh/h, the data points stay close to the line with the slope 𝑣f = 65 mi/h. When 𝑑 keeps 
increasing, the data points move to the right side of the line due to the factors we explained 
above. 
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Figure 61. Comparison of Macroscopic and Microscopic Models 
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Figure 62. Fundamental Diagram with Combined Controller 

Performance Measurement and Criteria 

We use the following measurements to evaluate the performance of the proposed controller. 
To be precise, in scenario 1 and 2, the measurements start at the time instant that the incident 
begins (𝑡 = 5 min) and terminate at the time instant 10 minutes after the incident ends (𝑡 = 45 
min in scenario 1 and 𝑡 = 25 min in scenario 2), so that the traffic states can achieve steady 
state. In scenario 3, where the incident is not removed, the measurements start at the time 
instant that the incident begins (𝑡 = 5 min) and terminate at 𝑡 = 45 min. In each scenario, we 
collect the data of all vehicles that pass through the bottleneck during the above defined 
measuring periods and calculate the following values: (a)Average travel time 𝑇t

‾ . (b)Average 
number of stops 𝑠‾. (c)Average number of lane changes 𝑐‾. (d)Average fuel consumption rate. 
(e)Average CO2 emission rate. (f)Average NOx emission rate. (g)Average PM25 emission rate. 
Control effects on traffic mobility are evaluated using the average travel time. Let 𝑁v denote 
the number of vehicles pass through the bottleneck during the measuring period. Average 
travel time 𝑇t

‾  is defined as 

𝑇t
‾ =∑(𝑡𝑖,out − 𝑡𝑖,in)

𝑁v

𝑖=1

/𝑁v 

where 𝑡𝑖,in and 𝑡𝑖,out denote the time instant vehicle 𝑖 enters and exits the network respectively. 
Note that our simulation network has enough space upstream of the controlled segment, 
therefore the time waiting in the queue is also counted. 
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Control effects on traffic safety are evaluated by the average number of stops and average 
number of lane changes. Less stops and lane changes indicate smoother traffic flow and lower 
probability of crash [@ioannou2012dynamic]. 𝑠‾ and 𝑐‾ are defined as 

𝑠‾ =∑𝑠𝑖

𝑁v

𝑖=1

/𝑁v,  𝑐‾ =∑𝑐𝑖

𝑁v

𝑖=1

/𝑁v 

where 𝑠𝑖, 𝑐𝑖 are number of stops and lane changes performed by vehicle 𝑖 respectively. For 
environmental impact, we measure the average fuel consumption rate and the average 
emission rates of CO2, NOx, and PM25. These rates are uniformly defined as: 

𝑅 =∑𝐸𝑖

𝑁v

𝑖=1

/∑𝑑𝑖

𝑁v

𝑖=1

 

where 𝐸𝑖 denotes the fuel consumed or a certain type of emission generated by vehicle 𝑖 in the 
highway network, 𝑑𝑖 represents the distance traveled by vehicle 𝑖 in the network, and 𝑅 
denotes the fuel consumption rate or the tailpipe emission rate of CO2, NOx, or PM25. The fuel 
consumption rate and emission rates are calculated using the MOVES model of the 
Environment Protection Agency (EPA) based on the speed and acceleration profile of each 
vehicle [@epa2010motor]. 

Evaluation Results 

Table 13, Table 14 and Table 15 demonstrate the results of microscopic evaluation of all 3 
scenarios under different traffic demands. From the results, we can see that the combined VSL 
& LC controller is able to provide significant improvements in traffic mobility, safety and 
environment. For traffic mobility, the proposed controller reduces the average travel time of 
each vehicle by 6.25% - 22.13%. 

For traffic safety, the combined VSL and LC controller dramatically decreases the average 
number of stops by 83% - 88.75% in different scenarios, therefore drastically reduces the 
instances of the stop-and-go traffic, smooths the traffic flow and damps the shockwave. 
Average number of lane changes is also decreased by 5.6% - 10.48%. The combined VSL and LC 
controller homogenizes the density and speed in each section. Drivers tend to not change lane 
if densities and speeds are similar in all lanes, therefore the VSL control reduces the number of 
lane changes in the network under consideration. This is highly important for traffic safety in 
highway segments with high truck ratio. Trucks not only take long time and large space to 
change lane, their large size also blocks the eye sight of drivers, which makes lane changes of 
trucks much more dangerous than other vehicles. 

The proposed controller reduces the fuel consumption rate and tailpipe emission rate from two 
perspectives. First, it reduces the travel time of vehicles, therefore decreases the emission 
levels of vehicles waiting in the queue. Second, it smooths the traffic flow and suppresses the 
acceleration and deceleration, therefore decreases the emission in these transient states. In the 
simulation, fuel consumption rate is decreased by 4.26% - 8.82%. The improvement in CO2 
emission rate is approximately proportional to the improvement of fuel consumption rate, 
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since CO2 is the main product of fuel burnt. The proposed controller reduces NOx emission rate 
by about 3.54% - 6.71%. The emission rate of PM25 is also decreased by 3.74% - 7.73%. 
Therefore, the combined VSL and LC controller is able to bring environmental benefits. 

The question how much of these improvements is due to VSL and LC controller alone is also 
answered using these simulation studies. From Table 13–Table 15, we can see that when the LC 
controller is applied alone, all evaluation criteria improve except for the average number of 
lane changes. The improvements on 𝑇t and 𝑠‾ are significant, while other criteria are only 
improved slightly. As discussed in Effects of Lane Change Control, the LC controller is able to 
recommend upstream vehicles to make lane changes before stopping at the queue and avoid 
the capacity drop therefore reduce the average travel time and average number of stops. 
Improvements on environmental criteria are results of improvements of traffic mobility. 
However, for the average number of lane changes, the LC controller only makes the lane 
changes take place in advance, instead of avoiding them, thus fails to reduce 𝑐‾. Furthermore, 
when the VSL controller is applied alone, only the average number of stops is reduced. Other 
criteria are not improved and in some cases are even deteriorated by the VSL controller. This is 
because the VSL controller (18) is designed based on the assumption that the capacity drop has 
already been removed by the LC controller. When the LC controller is absent, VSL is not able to 
improve the bottleneck flow and reduce the vehicle density. But when the VSL controller is 
applied together with the LC controller, all criteria are further improved since the VSL stabilizes 
the vehicle densities at the desired equilibrium point and homogenizes the traffic flow. When 
the traffic flow is homogenized in each section and lane, the drivers do not tend to change 
lanes frequently, hence the average numbers of lane changes are also reduced. Comparing the 
three scenarios, the improvement on each measurement criteria in scenario 2 appears to be 
less significant than the other 2 scenarios. The reason is that the incident duration in scenario 2 
is very short.
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Table 13. Evaluation Results of Scenario 1 

Demand 6000 veh/h    6500 veh/h  

Control No Control LC Only VSL Only Control Improvement No Control LC Only VSL Only Control Improvement 

Tt 18.85 17.12 18.95 16.85 -10.59% 20.72 17.67 21.21 16.83 -18.76% 

s¯ 11.16 2.45 3.61 1.90 -83.00% 12.10 2.55 3.78 1.91 -84.21% 

c¯ 4.00 4.75 4.74 3.78 -5.60% 4.67 5.54 5.88 4.31 -7.71% 

NOx 1.56 1.49 1.61 1.49 -4.43% 1.64 1.58 1.60 1.53 -6.71% 

CO2 558.56 543.22 577.59 536.01 -4.04% 589.46 556.47 605.59 537.21 -8.86% 

Energy 178.65 173.67 184.76 171.40 -4.06% 186.78 177.93 193.73 170.31 -8.82% 

PM25 0.049 0.048 0.047 0.050 0.66% 0.054 0.054 0.053 0.050 -7.73% 

Table 14. Evaluation Results of Scenario 2 

Demand 6000 veh/h    6500 veh/h  

Control No Control LC Only VSL Only Control Improvement No Control LC Only VSL Only Control Improvement 

Tt 12.41 11.87 13.46 11.63 -6.25% 13.58 12.62 15.02 12.42 -8.54% 

s¯ 5.16 0.75 2.16 0.65 -87.37% 5.72 1.58 2.33 0.91 -84.09% 

c¯ 3.68 3.80 3.90 3.52 -4.31% 4.27 4.81 5.01 3.91 -8.33% 

NOx 1.42 1.41 1.44 1.39 -2.48% 1.48 1.49 1.51 1.42 -4.05% 

CO2 483.37 479.17 497.81 470.16 -2.73% 508.13 504.16 524.36 487.18 -4.12% 

Energy 154.53 151.65 159.18 150.36 -2.70% 161.04 161.15 167.66 154.18 -4.26% 

PM25 0.041 0.041 0.041 0.041 -0.77% 0.046 0.047 0.047 0.045 -2.17% 
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Table 15. Evaluation Results of Scenario 3 

Demand   6000 veh/h    6500 veh/h  

Control No Control LC Only VSL Only Control Improvement No Control LC Only VSL Only Control Improvement 

Tt 19.84 17.25 18.16 16.69 -15.89% 21.25 16.75 20.45 16.55 -22.13% 

s¯ 15.46 2.13 4.00 1.74 -88.75% 16.12 2.54 3.72 1.83 -88.65% 

c¯ 4.61 4.55 5.11 4.21 -8.60% 4.58 5.36 6.36 4.10 -10.48% 

NOx 1.58 1.51 1.58 1.50 -4.95% 1.58 1.55 1.66 1.50 -4.95% 

CO2 570.72 538.41 564.54 529.76 -7.18% 568.96 550.32 597.94 523.25 -8.04% 

Energy 182.55 172.17 180.58 169.39 -7.21% 182.85 175.99 191.26 168.11 -8.06% 

PM25 0.052 0.047 0.047 0.050 -3.74% 0.052 0.053 0.053 0.050 -3.74% 
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Coordinated Variable Speed Limit, Ramp Metering, and Lane Change Controller 

Section based on the publication: 

Y. Zhang and P.A. Ioannou, "Coordinated variable speed limit, ramp metering and lane change 
control of highway traffic," IFAC-PapersOnLine 50.1 (2017): 5307-5312. 

Introduction 

The coordination of RM and VSL considers network mobility, on-ramp queues and fairness 
between the mainline and the ramps. The objective is to keep a balanced delay time between 
vehicles on the mainline and the ramps and avoid queues on the ramps from spilling back to 
the urban roads. In this section, we use an analytical method to design a coordinated VSL and 
RM controller based on a cell transmission macroscopic model with triangular fundamental 
diagram which together with a lane change controller guarantees stability of the traffic flow 
and convergence of traffic density to the desired equilibrium point exponentially fast. 
Considering the fact that RM controllers have been widely deployed in the United States, we 
assume that the RM control command is determined before the VSL and design the VSL 
controller to coordinate with the RM and stabilize the traffic flow. The coordinated VSL and RM 
controller with lane change is evaluated using Monte Carlo microscopic simulations and shows 
significant improvement in traffic mobility, safety and the environment impact. 

System Modeling 

Effect of VSL on the Fundamental Diagram 

Consider the highway bottleneck shown in Figure 55. A bottleneck is introduced by an incident 
that blocks one lane. The speed limit upstream the bottleneck is the free flow speed 𝑣𝑓 = 65 

mi/h. As discussed in Effects of Lane Change Control, the lane change controller can avoid the 
capacity drop. However, as shown in Figure 63 (a), in the fundamental diagram with lane 
change control, the low 𝜌𝑑 part is very close to its triangular approximation, which means that 
the flow speed is close to 𝑣𝑓, while the flow speed decreases as 𝜌𝑑 approaches 𝜌𝑑,𝑐. In last 

section we attribute the reduction of speed to modeling error, delay of speed limit following 
and driver’s caution when passing the incident site. This deviation of speed will not harm the 
benefit of VSL with respect to traffic mobility when designing the VSL controller based on the 
triangular fundamental diagram as long as 𝜌𝑑 is stabilized at 𝜌𝑑,𝑐. However, if the speed limit 
upstream the bottleneck is 𝑣𝑓, vehicles need to decelerate when approaching the bottleneck, 

which leads to shock waves that propagate upstream. 



 97 

 

Figure 63. Effects of LC and VSL on Fundamental Diagrams 

If we decrease the speed limit upstream the bottleneck to 𝑣𝑑, such that 0 < 𝑣𝑑 < 𝑣𝑓, according 

to (Markos Papageorgiou, Kosmatopoulos, and Papamichail 2008), the critical density in the 
fundamental diagram will be shifted to higher value and the slope of the under-critical part of 
the fundamental diagram will be decreased and made closer to a straight line. Our microscopic 
simulations confirm this statement. The black solid line in Figure 63 (b) shows the fundamental 
diagram under a speed limit of 40 mi/h. Compared to the one under 65 mi/h, which is shown as 
the blue solid line in Figure 63 (b), the capacity of the bottleneck is not decreased despite under 
a lower speed limit as the critical density is increased from �̃�𝑑,𝑐 to 𝜌𝑑,𝑐. As we can see in the 
figure, this fundamental diagram is very close to its triangular approximation, that is, the speed 
deviation at 𝜌𝑑,𝑐 is very small. If we design the coordinated VSL and RM controller based on this 

fundamental diagram and let the VSL command converge to 𝑣𝑑 at the equilibrium state, the 
shockwave upstream the bottleneck will be attenuated. We demonstrate this with microscopic 
simulations in Numerical Simulations. To conclude, under speed limit of 𝑣𝑑, the highway 
bottleneck can be modeled with high accuracy as equation (4).  

Cell Transmission Model with Ramp Flows 

The highway segment to be controlled by the coordinated VSL and RM controller is shown in 
Figure 64. The bottleneck is introduced by a lane closure. The highway segment upstream the 
bottleneck is divided into 𝑁 + 1 sections, which are indexed as section 0 through section 𝑁. For 
𝑖 = 0,1, . . . , 𝑁, 𝜌𝑖 , 𝑞𝑖 , 𝑟𝑖, 𝑠𝑖 represent the vehicle density, mainline in-flow rate, on-ramp flow 
rate and off-ramp flow rate in section 𝑖 respectively, where 𝜌𝑖, 𝑠𝑖 are measurable, 𝑟𝑖 are 
determined by the RM controller, therefore also measurable. For 𝑖 = 0,1, . . . , 𝑁 − 1, 𝑣𝑖  denote 
the variable speed limit in section 𝑖. In section 𝑁, the speed limit is a constant denoted by 𝑣𝑑. 
𝑞𝑏 denotes the flow rate through the bottleneck. Let 𝑅𝑖 = 𝑟𝑖 − 𝑠𝑖 be the net ramp flow and 𝐿𝑖  
the length of section 𝑖, for 𝑖 = 0,1, . . . , 𝑁. According to the flow conservation law, we have 

 
𝜌�̇� =

1

𝐿𝑖
(𝑞𝑖 − 𝑞𝑖+1 + 𝑅𝑖),   for 𝑖 = 0,1, . . . , 𝑁 − 1

𝜌�̇� =
1

𝐿𝑁
(𝑞𝑁 − 𝑞𝑏 + 𝑅𝑁)

 

(28) 
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Figure 64. Configuration of the Highway Segment 

The flow rate and bottleneck model is the same as (3) and (4). For the sake of completeness, we 
write the equations here. 

Controller Design 

In this section, the coordinated VSL and RM controller is designed. We first design the VSL 
controller by assuming that the RM control command is given. Then we choose the ramp 
metering strategy, ALINEA/Q, to manage the ramp flows and the queue lengths on ramps. 

Design of VSL 

The goals of designing the VSL controller include: (1) Given any type of RM controller, the VSL 
controller should be able to coordinate with it and stabilize the density 𝜌𝑁 in the discharging 
section at the critical value 𝜌𝑑,𝑐, in order to keep 𝑞𝑏 at the highest level. (2) Homogenize the 
traffic flow upstream the bottleneck in order to improve the traffic safety and bring 
environmental benefits. Consider the subsystem which includes section 1 through section N. 
Define the error states 

𝑒𝑖 = 𝜌𝑖 − 𝜌𝑑,𝑐,for 𝑖 = 1,2, . . . , 𝑁 

 𝑞0 = min{𝑑, 𝐶0, 𝑤0(𝜌j,0 − 𝜌0)}

𝑞𝑖 = min{𝑣𝑖−1𝜌𝑖−1, 𝐶𝑖, 𝑤𝑖(𝜌j,𝑖 − 𝜌𝑖)},  𝑖 = 1,… ,𝑁
 

(29) 

 
𝑞b = {

𝑣d𝜌𝑁 , 𝜌𝑁 ≤ 𝜌d,c

𝑤b(𝜌j,d − 𝜌𝑁), 𝜌𝑁 > 𝜌d,c
 

(30) 
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We have 

Let 

Substitute the controller (32) into the open-loop system (31), we have the following closed-loop 
system: 

Theorem 1.2. 𝑒𝑖 = 0, for 𝑖 = 1,2, . . . , 𝑁 is the unique and isolated equilibrium point of the 
closed-loop system (33) and is guaranteed to be globally exponentially stable. The rate of 
exponential convergence depends on the control design parameters 𝜆𝑖, 𝑖 = 0,1, . . . , 𝑁 − 1. 

The proof of Theorem 1.2 is similar to the proof of Theorem Theorem 1.1. According to 
Theorem 1.2, the steady state value of 𝜌𝑖  is 𝜌𝑖,𝑠𝑠 = 𝜌𝑑,𝑐, 𝑖 = 1, . . . , 𝑁. The steady state value of 

𝑣𝑖  is 𝑣𝑖,𝑠𝑠 = 𝑣𝑑 − ∑ 𝑅𝑖
𝑁
𝑗=𝑖+1 /𝜌𝑑,𝑐, 𝑖 = 1, . . . , 𝑁 − 1. Therefore, by applying the coordinated VSL 

and RM controller, 𝜌1 through 𝜌𝑁 are stabilized and homogenized. The effect of a ramp flow is 
compensated by its upstream VSL and does not affect downstream traffic. If 𝑅𝑖 = 0, then 
𝑣𝑖,𝑠𝑠 = 𝑣𝑑, for 𝑖 = 1, . . . , 𝑁 − 1. That is the upstream speed limit converges to 𝑣𝑑. By adjusting 
the value of 𝑣𝑑, we can guarantee that the shockwave resulted by speed deviation between 
actual traffic flow and the triangular fundamental diagram is eliminated. 

 
�̇�𝑖 =

1

𝐿𝑖
(𝑣𝑖−1𝜌𝑖−1 − 𝑣𝑖𝜌𝑖 + 𝑅𝑖),  for 𝑖 = 1,2, . . . , 𝑁 − 1

�̇�𝑁 =

{
 
 

 
 
𝑣𝑁−1𝜌𝑁−1 − 𝑣𝑑𝜌𝑁 + 𝑅𝑁

𝐿𝑁
, 𝜌𝑁 ≤ 0

𝑣𝑁−1𝜌𝑁−1 − 𝑤𝑏(𝜌𝑗,𝑏 − 𝜌𝑁) + 𝑅𝑁

𝐿𝑁
, 𝜌𝑁 > 0

 

(31) 

 
𝑣𝑖 =

−𝜆𝑖𝐿𝑖+1𝑒𝑖+1 + 𝑣𝑑𝜌𝑑,𝑐 − ∑ 𝑅𝑗
𝑁
𝑗=𝑖+1

𝜌𝑖
,  for 𝑖 = 0,1, . . . , 𝑁 − 2

𝑣𝑁−1 =

{
 
 

 
 
−𝜆𝑁−1𝐿𝑁𝑒𝑁 + 𝑣𝑑𝜌𝑁 − 𝑅𝑁

𝜌𝑁 − 1
, 𝜌𝑁 ≤ 𝜌𝑑,𝑐

−𝜆𝑁−1𝐿𝑁𝑒𝑁 + 𝑤𝑏(𝜌𝑗,𝑏 − 𝜌𝑁) − 𝑅𝑁

𝜌𝑁 − 1
, 𝜌𝑁 ≤ 𝜌𝑑,𝑐

 

(32) 

 
�̇�𝑖 = −𝜆𝑖−1𝑒𝑖 +

𝐿𝑖+1
𝐿𝑖

𝜆𝑖𝑒𝑖+1,  for 𝑖 = 1,2, . . . , 𝑁 − 2

�̇�𝑁−1 =

{
 

 −𝜆𝑁−2𝑒𝑁−1 +
𝐿𝑁
𝐿𝑁−1

(𝜆𝑁−1 − 𝑣𝑑)𝑒𝑁, 𝜌𝑁 ≤ 0

−𝜆𝑁−2𝑒𝑁−1 +
𝐿𝑁
𝐿𝑁−1

(𝜆𝑁−1 + 𝑤𝑏)𝑒𝑁, 𝜌𝑁 > 0

�̇�𝑁 = −𝜆𝑁−1𝑒𝑁

 

(33) 
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Now let us consider the dynamics of 𝜌0 and 𝑣0. Since 𝑞1 converges to 𝑣𝑑𝜌𝑑,𝑐, if the demand 

𝑑 > 𝑣𝑑𝜌𝑑,𝑐, 𝜌0 will increase. Once 𝜌0 > 𝜌𝑗,0 − 𝑑/𝑤0, we have 

Substitute (32) into (34), we have 

�̇�0 =
1

𝐿0
(𝑤0(𝜌𝑗,0 − 𝜌0) − 𝑣𝑑𝜌𝑑,𝑐 +∑𝑅𝑗

𝑁

𝑗=0

) 

Assume that ∑ 𝑅𝑗
𝑁
𝑗=0  is constant, then 

𝜌0 = 𝜌𝑗,0 +
∑ 𝑅𝑗
𝑁
𝑗=0 − 𝑣𝑑𝜌𝑑,𝑐

𝑤0
 

is a stable equilibrium point. As long as ∑ 𝑅𝑗
𝑁
𝑗=0 < 𝑣𝑑𝜌𝑑,𝑐, 𝜌0 will not exceed the jam density 

𝜌𝑗,0 and 𝑣0 will not go negative, thus the VSL controller is feasible. 

For driver’s acceptance and safety, we as well apply the constraints (22)-(24) to the VSL 
controller (32). 

Design of the RM Controller 

According to Theorem 1.2, the VSL controller (32) can stabilize the system and improve the 
mobility as long as the net ramp flow is lower than the bottleneck capacity. It seems that RM 
control is unnecessary. However, if no RM is applied and large ramp flows flush into the 
mainline, the merging of ramp flows will severely disturb the mainline flow. Furthermore, when 
the net ramp flow is high, the VSL controller (32) will suppress the mainline flow in order to 
spare the capacity for the ramp flows. That is, without RM control, the ramp flow will always 
have priority which may harm the fairness between the ramp flows and the mainline flow, or 
even make the VSL controller infeasible. Furthermore, the RM controller should be able to 
manage the queue on the ramps so that the queues do not spill backwards to the urban road 
network. We adopt the ALINEA/Q, which modifies the classic ALINEA ramp metering strategy 
with queue adjustment. The original ALINEA/Q method proposed in (Smaragdis and 
Papageorgiou 2003) includes the downstream occupancy and the queue length in the feedback 
loop. In this paper, to be consistent with the VSL controller, we use the downstream density 
instead of occupancy. 

 
�̇�0 =

1

𝐿0
(𝑤0(𝜌𝑗,0 − 𝜌0) − 𝑣0𝜌0 + 𝑅0) 

(34) 
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For an on-ramp 𝑖, two RM rates, 𝑟𝑖
𝑑(𝑘) and 𝑟𝑖

𝑞(𝑘), are decided respectively based on the 

downstream density and the queue length on the ramp at each time step 𝑡 = 𝑘𝑇𝑐. The final RM 
rate 𝑟𝑖(𝑘) is the maximum of the two. i.e., 

where 𝜌𝑖(𝑘) is the density in the highway section that connects to ramp 𝑖, 𝑤𝑖(𝑘) is the queue 
length on ramp 𝑖 at time step 𝑘, 𝑑𝑖(𝑘 − 1) is the demand from ramp 𝑖 within time step 𝑘 − 1, 

𝑤𝑖
𝑟 is the reference queue length of ramp 𝑖. 𝑟𝑖

𝑑(𝑘) is an integral feedback controller that 
regulates 𝜌𝑖(𝑘) to be close to 𝜌𝑑,𝑐, which helps maintain the vehicle density on mainline at the 

desired equilibrium value. 𝑟𝑖
𝑞(𝑘) adjusts the RM rate in order to prevent the queue length from 

being too large, i.e., if 𝑤𝑖(𝑘) is larger than 𝑤𝑖
𝑟, the RM rate will increase to discharge excessive 

vehicles in the queue and newly arrived vehicles. Since the final RM rate is the maximum of the 
two, the ramp flow will get the priority to pass the bottleneck if the ramp queue is large, while 
the mainline flow will get the priority if the vehicle density on the mainline is high. In this way, 
the ALINEA/Q strategy maintains the fairness between the ramp flows and the mainline flow 
and avoids the ramp queues from piling up towards the urban road. 

Numerical Simulations 

In this section, we use the microscopic simulator VISSIM to carry out Monte Carlo simulations 
to evaluate the performance of the coordinated VSL, RM and lane change control on traffic 
mobility, safety and the environment. 

Scenario Setup 

We evaluate the proposed controller on the highway segment in Figure 65. To coordinate with 
the ramps, we divide the highway segment in to 8 sections, the VSL signs are deployed at the 
beginning of section 0 through 6. An incident blocks the middle lane at the end of section 7 and 
creates a bottleneck. 4 on-ramps, which are equipped with RM, and 5 off-ramps are connected 
to the highway segment. The lane change control is deployed at the beginning of section 7. The 
incident occurs at 5 minutes after simulation starts, and lasts for 30 min. The capacity of the 
highway segment is 6800 veh/h without incident. During the incident, the ideal bottleneck 
capacity is about 4500 veh/h. We load the network with the real demand at 5pm on Monday, 
which is a peak hour. The mainline demand is 4500 veh/h, the on-ramp demand from upstream 
to downstream are 400 veh/h, 500 veh/h, 300 veh/h, 300 veh/h respectively. 

 

Figure 65. Geometry of Simulation Network 

 𝑟𝑖
𝑑(𝑘) = 𝑟(𝑘 − 1) + 𝛽𝑑 [(𝜌𝑑,𝑐 − 𝜌𝑖(𝑘))]

𝑟𝑖
𝑞(𝑘) = 𝛽𝑞(𝑤𝑖

𝑟 − 𝑤𝑖(𝑘)) + 𝑑𝑖(𝑘 − 1)

𝑟𝑖(𝑘) = max{𝑟𝑖
𝑑(𝑘), 𝑟𝑖

𝑞(𝑘)}

 

(35) 
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Simulation Results 

Figure 66 shows the bottleneck flow with and without the coordinated VSL, RM and lane 
change control. When there is no control, the flow rate decreases immediately to around 3000 
veh/h due to the lane blockage and capacity drop, and increases right away after the incident is 
removed as the queue in the bottleneck area flushes downstream. When the controller is 
applied, the flow rate decreases to around 4200 veh/h, which is higher than that in the no 
control case since the capacity drop is avoided by the lane change control and VSL stabilizes the 
vehicle densities. The bottleneck flow starts increasing about 10 min after the incident is 
removed as the high density area is held in section 0 by the VSL controller. The high density 
wave moves forward from section 0 and the flow rate 𝑞𝑏 starts increasing once the wave front 
reach the bottleneck. 

 

Figure 66. Bottleneck Flow —with control, —no control 

Figure 67 shows the curve of 𝜌7 and 𝜌0, which are the vehicle density of the discharging section 
and the first VSL controlled section, respectively. When there is no control, 𝜌7 starts increasing 
immediately as the incident occurs at 𝑡 = 5 min. In addition the shockwave propagates 
upstream, which makes 𝜌0 starts increasing at 𝑡 = 25 min and reaches 500 veh/mi. The high 
density in section 0 does not discharge until 15 min after the incident is removed. When the 
coordinated controller is applied, 𝜌7 increases slightly and is stabilized at 110 veh/mi. 𝜌0 
increases immediately after the incident since 𝑣0 decreases to reduce the flow into 
downstream sections and is stabilized at around 400 veh/h which is lower than that without 
control. 
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Figure 67. Vehicle Densities w/ and w/o Control —with control, —no control 

Figure 68 demonstrates the contour plot of vehicle densities with respect to time and space 
with different values of 𝑣𝑑. When 𝑣𝑑 = 40 mi/h, high density is held in section 0 during the 
incident, while downstream sections are highly homogenized. 𝜌2 is higher than 𝜌𝑑,𝑐 at the 
beginning of the incident as the ramp flows 𝑟11 and 𝑟12 flush in but then discharged under 
control. The density in section 6 is slightly higher than 𝜌𝑑,𝑐 as vehicles receive the lane change 
recommendations and make lane changes thus slightly disturbs upstream flow. When 𝑣𝑑 = 65 
mi/h, a shockwave propagates upstream. After the incident is removed, the vehicles in section 
0 flush downstream and meet with the shockwave, which leads to a high density area in section 
2. However, in this case, the discharging section is still well protected. As the shockwave 
propagates upstream, vehicle densities converge to 𝜌𝑑,𝑐 gradually from downstream section to 

upstream section. This is because we use the cascade structure of VSL controller in Figure 49, 
which attenuates the shockwave section by section. Thus the controller is robust to parameter 
selection. 

Figure 69 shows the queue length on ramp 𝑟11 and 𝑟3, with RM control alone and with the 
coordinated controller. With RM control alone, the queues pile up fast as the densities in 
mainline increase. Due to the queue adjustment mechanism of ALINEA/Q, the queue lengths 
are maintained around the reference value. With the coordinated controller, the queue lengths 
increase in the transient process when the incident begins and the mainline density is being 
adjusted to the desired level and then discharge fast. After the incident is removed, large flow 
flushes downstream, the RM controller decrease the rate to give priority to the mainline, 
therefore the queue lengths increase. 
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Figure 68. Density Contours 

 

Figure 69. Queue Length w/ and w/o Control 

We use the following metrics to evaluate the performance of the coordinated controller. To 
evaluate traffic mobility, we use: (a) average travel time 𝑇‾𝑡; for traffic safety, use (b) average 
number of stops 𝑠‾ and (c) average number of lane changes 𝑐‾; for the environment, we use (d) 
average emission of CO2 and (e) average fuel consumption. The detailed definition of the above 
metric can be found in (Y. Zhang and Ioannou 2017a). 

Table 16 shows the evaluation results. The improvement in traffic mobility, safety and the 
environment is significant. The average travel time is reduced by about 27% as the bottleneck 
throughput is increased. For traffic safety, the number of stops dramatically decreased by 81% 
as the lane change control prevented vehicles from stopping at the bottleneck and waiting for 
lane changes. The 10% reduction in number of lane changes is contributed by both 
homogenization of mainline flow and the regulated merging behavior of ramp flows. For the 
environment metrics, the reductions of CO2 emission and energy consumption are usually 
proportional to each other, which are both around 8% in this case. 
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Table 16. Evaluation Results 

Control Type No 

Control 

RM + 

VSL 

Improvement 

T¯
t (min) 

15 11 27% 

s¯ 23 4 82% 

c¯ 5.1 4.6 10% 

CO2 

(g/veh/mi) 

585 538 8% 

Fuel 

(g/veh/mi) 

187 172 8% 
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Comparison of Feedback Linearization and Model Predictive Strategies for VSL 
Control 

Section based on the publication: 

Y. Zhang, I.I. Sirmatel, F. Alasiri, P.A. Ioannou, and N. Geroliminis, "Comparison of feedback 
linearization and model predictive techniques for variable speed limit control," 2018 21st 
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2018. 

Introduction 

Given the fact that LC control is able to relieve or eliminate the capacity drop, one important 
question arising at this point is that if other VSL control strategies are combined with the LC 
control, will the system performance exceed the performance under the FL controller? 
Intuitively, since MPC control follows an optimization based routine, it should provide the 
‘optimal’ performance to some extent. However, FL controller guarantees exponential stability 
of the equilibrium point with highest bottleneck flow rate. Therefore, by tuning the feedback 
gain, the FL controller should be able to force the system to converge as fast as possible, only 
limited by the saturation of control input. 

In this section, we propose FL and MPC schemes for VSL-actuated highway traffic, where we 
assume that an LC controller is active just upstream of the bottleneck. Both controllers are 
designed with a CTM-based model representing the ideal system. TTS performance and 
robustness with respect to perturbations on model parameters and measurement noise of the 
proposed controllers are evaluated via simulation studies. Results show both VSL controller is 
able to improve the total time spent under different levels of perturbation and measurement 
noise. Furthermore, feedback linearization VSL can provide better performance than model 
predictive VSL with much less computational effort. 

Nonlinear Model Predictive Control 

Model predictive control strategy generates the control command at each control step by 
solving a finite horizon optimal control problem in a receding horizon manner. Here, we 
formulate the cost function of the MPC problem as the quadratic error of the states of system 
(17). To take into consideration the vehicles that are blocked upstream the VSL controlled 
segment, we augment the system by add a new state 𝑄, that is 

with 𝑄 = 0 at 𝑡 = 0. Therefore, if the number of vehicles upstream of section 0 is greater than 
the number at time 0, 𝑄 > 0, otherwise 𝑄 ≤ 0. We should note here that the introduction of 𝑄 
is only for the purpose of evaluating the TTS. Both the FL and MPC controllers are implemented 
based on system (17). The performance metric TTS is defined as follows: 

 �̇� = 𝑑 − 𝑞0, (36) 

 
TTS = ∫ 𝑄

𝑇

0

(𝑡) +∑𝜌𝑖

𝑁

𝑖=0

(𝑡)𝐿𝑖  𝑑𝑡 
(37) 
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The open-loop highway system (17) can be implicitly expressed as 

Here we formulate the problem of finding the VSL commands 𝑢(⋅) that try to maintain system 
(38) at the equilibrium point as the following finite-horizon constrained optimal control 
problem (OCP): 

where 𝑡 is the current control sampling instant in time, �̂�(𝑡) is the measurement on error states 

taken at that instant, �̃� and �̃� are weighting matrices on error and control input, respectively, 
whereas 𝑇𝑝 is the prediction horizon. The optimization problem is solved at the beginning of 

each control step 𝑘𝑇𝑐, with �̂�(𝑘𝑇𝑐) as the initial condition. Constraint (12) has already been 
included in the constraints of the optimization problem. (10) and (11) are also applied to the 
MPC VSL commands before applied to the system. 

Due to the continuous-time dynamics, the OCP (39) is an infinite dimensional optimization 
problem. We resort to approximating it as a finite dimensional nonlinear program (NLP) via the 
direct multiple shooting method [@bock1984multiple]. Details on direct methods from 
numerical optimal control literature can be found in (Diehl et al. 2006). 

Numerical Simulation 

In this section, macroscopic simulation is used to evaluate the performance and robustness of 
the FL and NMPC schemes combined with LC. 

Scenario setup 

The FL and MPC controllers have evaluated on the network shown in Figure 55 In our 
simulation, the incident happens 5 minutes after the simulation starts, and it lasts for 30 min. 
The nominal demand is 6000 veh/h. The desired equilibrium point of this network is calibrated 
to be: 

𝜌0
e = 278 veh/mi

𝜌1
e = 𝜌2

e = ⋯ = 𝜌7
e = 110 veh/mi

𝑣0
e = 15.8 mi/h

𝑣1
e = 𝑣2

e = ⋯ = 𝑣7
e = 40 mi/h

 

For the FL controller, we choose 𝜆𝑖 = 50 for 𝑖 = 0,1, … ,6. The NMPC controller is implemented 
using the direct multiple shooting method via the CasADi toolbox (Andersson 2013) in MATLAB 
8.5.0 (R2015a), on a 64-bit Windows PC with 3.4-GHz Intel Core i7 processor and 8-GB RAM, 
where IPOPT (Wächter and Biegler 2006) is used for solving the NLPs. In our simulation, we 

 �̇� = 𝑓(𝑒, 𝑢) (38) 

 
minimize

𝑢(⋅)
∫ 𝑒(𝜏)𝑇�̃�𝑒(𝜏) + 𝑢(𝜏)𝑇�̃�𝑢(𝜏)𝑑𝜏
𝑘𝑇𝑐+𝑇𝑝

𝑘𝑇𝑐

subject to 𝑒(𝑘𝑇𝑐) = �̂�(𝑘𝑇𝑐)

�̇� = 𝑓(𝑒, 𝑢),  ∀𝜏 ∈ [𝑡, 𝑡 + 𝑇𝑝]

𝑣min − 𝑣𝑒 ≤ 𝑢(𝜏) ≤ 𝑣max − 𝑣𝑒 ,

 

(39) 
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choose the prediction horizon 𝑇𝑝 = 10 min, which is much greater than the control time step 

𝑇𝑐 = 30 s. Weight matrices are chosen as �̃� = 𝐈 and �̃� = 0.1𝐈, with 𝐈 denoting the identity 
matrix of appropriate dimensions. The computation time of NMPC is around 0.35 seconds, 
whereas it is negligible for FL. The NMPC scheme is still computationally tractable, as its 
computation time of 0.35 s per step is negligible with respect to the control time step of 30 s. 

Performance and Robustness Analysis with Macroscopic Simulations 

To compare the performance and robustness of the FL and MPC VSL controllers, we evaluate 
the following criteria for the two controllers: 1) Total time spent (TTS) as defined in (37), and 
sensitivity of TTS with respect to 2) perturbation on traffic demand, 3) perturbation on model 
parameters and 4) measurement noise. In the simulation, the FL and MPC controllers are 
synthesized with the ideal model (38), but the control command are applied on a perturbed 
model. The structure of the simulation system is shown in Figure 70. For the traffic demand, we 
add up to ±20% perturbation on the nominal demand 6000 veh/h. For the model parameters, 
as shown in Figure 71, we respectively add up to ±20% perturbation on the nominal value of 
𝜌𝑑,𝑐 and 𝐶𝑏, which directly alter the shape of the fundamental diagram of the bottleneck 
section. For the measurement noise, we use Gaussian white noise with different levels of 
standard deviation up to 𝜎 = 0.1𝜌𝑐𝑏 to match the scale of the density measurements. 

 

Figure 70. Simulation System 
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Figure 71. Perturbation on the Model Parameters 

Figure 72 shows the behavior of the vehicle density in the discharging section under FL and 
MPC controller. Both controllers are able to maintain the density around the desired value 
𝜌7
𝑒 = 110 veh/h after the incident occurs at 𝑡 = 5 min. The oscillation is introduced by the 

roundup-to-5 constraint. However, the MPC controller introduces higher frequency chattering 
and a sharp decrease at the beginning of the incident. 

 

Figure 72. ρ_7 with FL and MPC 

A series of simulation experiments are conducted with different levels of perturbation and 
measurement noise. Figure 73 shows how TTS varies with varying demand levels. The figure 
showcases that both controllers are able to function properly under various levels of demand, 
the TTS increases and decreases approximately linear with the demand. This demonstrates that 
both MPC and FL VSL controllers are robust with respect to the variation of demand, which is 
due to the selection of the desired equilibrium point (13)-(15). At the equilibrium point, the 
speed limit in section 0 is decreased to block excessive traffic demand at upstream of the entire 
control segment, therefore the bottleneck flow is not affected. Furthermore, under different 
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levels of perturbation, the performance of FL and MPC controller are similar. But the TTS of FL 
is always slightly lower than that of MPC, which shows that MPC fails to beat FL in TTS although 
the control commands are generated by solving the optimization problem in receding horizon 
fashion. 

 

Figure 73. Performance sensitivity of no control (black), FL (blue), and NMPC (red) to 
perturbations on demand d. 

In Figure 74 and Figure 75, the change in TTS is plotted with respect to different values of 
perturbation on 𝐶𝑏 and 𝜌d,c, respectively. These results show that both controllers achieve 
significant improvements over the no control case and are able to operate properly even under 
situations with high amount of uncertainty in these model parameters. With perturbation on 
𝐶𝑏, the TTS under FL and MPC are increased by 45% and 43% in the worst case, respectively. 
Considering the fact that in this case the bottleneck capacity is decreased by 20% as a baseline, 
the TTS does not increase too much due to the modeling error and is still much lower than that 
in the no control case. The worst case for the perturbation on 𝜌d,c is 27% worse than the non-
perturbed value for FL, and 16% for NMPC. 
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Figure 74. Performance sensitivity of no control (black), FL (blue), and NMPC (red) to 
perturbations on C_b. 

 

Figure 75. Performance sensitivity of no control (black), FL (blue), and NMPC (red) to 
perturbations on ρ_"d,c" . 

The sensitivity of TTS performance in the case of varying levels of standard deviation in 
measurement noise is given in Figure 76, which shows that the TTS under both controllers 
increases with the standard deviation of measurement noise. However, the system does not 
diverge as the no control case. The performance of FL is always better than that of NMPC in this 
case. 
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Figure 76. Performance sensitivity of FL (blue) and NMPC (red) to increasing levels of standard 
deviation in measurement noise. 

Performance and Robustness Analysis with Microscopic Simulations 

Table 17 shows the microscopic simulation results with calibrated model parameter set: 

𝑤1 = 14 mi/h,  𝑤𝑏 = 40 mi/h,  𝜌𝑐𝑏 = 110 veh/mi 

The performance of the MPC controller is similar to that of the FL controller. 

Table 18-Table 20 demonstrate the simulation results of MPC and FL controller under different 
values of model parameters. From the result, we can see that the FL controller is robust with 
respect to the perturbations on 𝑤1, 𝑤𝑏 and 𝜌𝑐𝑏. As to MPC, the mobility performance is 
significantly adversed by the perturbations on 𝑤1 and 𝜌𝑐𝑏, which both change the value of the 
equilibrium point. But MPC is robust with respect to the perturbations on 𝑤𝑏 which does not 
change the equilibrium point and can be compensated by the control input.
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Table 17. Evaluation Results with Original Parameters 

  TTT (hr) Stops LC CO (g/veh/mi) Nox (g/veh/mi) CO2 (g/veh/mi) Energy (g/veh/mi) 

No Control mean ± std 1270 ± 42 23.2 ± 1.3 6.6 ± 0.2 3.4 ± 0.1 1.8 ± 0.1 605 ± 20 194 ± 6 

Improvement - - - - - - - 

LC Only mean ± std 1075 ± 40 10.5 ± 0.9 5.9 ± 0.3 3.4 ± 0.1 1.7 ± 0.1 552 ± 16 176 ± 5 

Improvement 15% 55% 11% 0% 6% 9% 9% 

FL mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 

Improvement 18% 57% 17% 12% 11% 13% 13% 

MPC mean ± std 1018 ± 41 8.7 ± 1.2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 525 ± 15 168 ± 5 

Improvement 20% 63% 17% 12% 11% 13% 13% 

Table 18. Evaluation Results under Different w1 

   TTT (hr) Stops LC CO (g/veh/mi) Nox (g/veh/mi) CO2 (g/veh/mi) Energy (g/veh/mi) 

FL w1=9 mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 

Improvement 18% 57% 17% 12% 11% 13% 13% 

w1=14 mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 

Improvement 18% 57% 17% 12% 11% 13% 13% 

w1=6 mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 

Improvement 18% 57% 17% 12% 11% 13% 13% 

MPC w1=9 mean ± std 1096 ± 55 12.3 ± 2.4 5.5 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 533 ± 16 170 ± 5 

Improvement 14% 47% 17% 9% 11% 12% 12% 

w1=14 mean ± std 1018 ± 41 8.7 ± 1.2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 525 ± 15 168 ± 5 

Improvement 20% 63% 17% 12% 11% 13% 13% 

w1=6 mean ± std 1226 ± 61 12.1 ± 1.9 5.6 ± 0.3 3.1 ± 0.1 1.6 ± 0.1 546 ± 20 174 ± 6 

Improvement 3% 48% 15% 9% 11% 10% 10% 
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Table 19. Evaluation Results under Different ρcb 

   TTT (hr) Stops LC CO (g/veh/mi) NOx (g/veh/mi) CO2 (g/veh/mi) Energy (g/veh/mi) 

FL ρcb = 100 mean ± std 1024 ± 44 8.8 ± 2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 528 ± 14 169 ± 5 

Improvement 19% 62% 17% 12% 11% 13% 13% 

ρcb = 110 mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 

Improvement 18% 57% 17% 12% 11% 13% 13% 

ρcb = 120 mean ± std 1031 ± 43 9.4 ± 2.2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 526± 15 168 ± 4 

Improvement 19% 59% 17% 12% 11% 13% 13% 

MPC ρcb = 100 mean ± std 1236 ± 41 11.4 ± 0.3 5.5 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 544 ± 16 174 ± 5 

Improvement 3% 51% 17% 9% 11% 10% 10% 

ρcb = 110 mean ± std 1018 ± 41 8.7 ± 1.2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 525 ± 15 168 ± 5 

Improvement 20% 63% 17% 12% 11% 13% 13% 

ρcb = 120 mean ± std 1242 ± 35 11.6 ± 1.0 5.5 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 542 ± 17 173 ± 6 

Improvement 2% 50% 17% 9% 11% 10% 11% 

Table 20. Evaluation Results under Different wb 

   TTT (hr) Stops LC CO (g/veh/mi) Nox (g/veh/mi) CO2 (g/veh/mi) Energy (g/veh/mi) 

FL wb=20 mean ± std 1025 ± 36 9.6 ± 1.0 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 527 ± 13 169 ± 4 

Improvement 19% 59% 17% 12% 11% 13% 13% 

wb=40 mean ± std 1036 ± 36 9.9 ± 1.3 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 529 ± 13 169 ± 4 

Improvement 18% 57% 17% 12% 11% 13% 13% 

wb=60 mean ± std 1042 ± 34 10.2 ± 1.8 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 526 ± 15 168 ± 4 

Improvement 18% 56% 17% 12% 11% 13% 13% 

MPC wb=20 mean ± std 1098 ± 58 12.4 ± 2.4 5.5 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 533 ± 16 170 ± 5 

Improvement 14% 47% 17% 9% 11% 12% 12% 

wb=40 mean ± std 1018 ± 41 8.7 ± 1.2 5.5 ± 0.2 3.0 ± 0.1 1.6 ± 0.1 525 ± 15 168 ± 5 

Improvement 20% 63% 17% 12% 11% 13% 13% 

wb=60 mean ± std 1092 ± 53 12.3 ± 2.2 5.5 ± 0.2 3.1 ± 0.1 1.6 ± 0.1 529 ± 15 169 ± 5 

Improvement 14% 47% 17% 9% 11% 13% 13% 
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Stability Analysis and Variable Speed Limit Control of a Traffic Flow Model 

Section based on the publication: 

Y. Zhang and P.A. Ioannou, "Stability analysis and variable speed limit control of a traffic flow 
model," Transportation Research Part B: Methodological 118 (2018): 31-65. 

Stability Analysis of Cell Transmission Model under All Operating Conditions 

In Combined Variable Speed Limit and Lane Change Control and Coordinated Variable Speed 
Limit, Ramp Metering, and Lane Change Controller, we designed a coordinated variable speed 
limit, ramp metering and lane change control based on the first-order cell transmission model. 
However, the analysis of dynamical behavior and stability properties of the open-loop cell 
transmission model which takes capacity drop into consideration is missing from the previous 
work, which makes it difficult for us to perform an analytical comparison of the open-loop and 
closed-loop performance of the VSL controlled cell transmission model. In addition, the analysis 
of the closed-loop behavior in In Combined Variable Speed Limit and Lane Change Control and 
Coordinated Variable Speed Limit, Ramp Metering, and Lane Change Controller is performed 
with a simplified CTM, i.e., consider only the region in the state space near the desired 
equilibrium point (13) and under the assumption that the demand is higher than the bottleneck 
capacity. It remains unclear whether the global stability of the desired equilibrium point is still 
valid with the complete CTM and in other operating scenarios. 

In (Gomes et al. 2008), Gomes et al. performed a thorough analysis of the equilibrium points 
and their stability properties of the CTM model. However, the authors did not take the capacity 
drop phenomenon into consideration. Reference (Lovisari et al. 2014) developed sufficient 
conditions for the stability of the equilibrium points of CTM in terms of connectivity of a graph 
associated with the traffic network. The results of (Gomes et al. 2008) and (Lovisari et al. 2014) 
are established based on the monotonicity of CTM. However, if the CTM is modified to account 
for capacity drop and the fact that the discharging flow rate of a congested road section 
decreases with density density (Y. Zhang and Ioannou 2017a; Srivastava, Jin, and Lebacque 
2015; H.-Y. Jin and Jin 2015; Kontorinaki et al. 2016), then the CTM is no longer monotone. 

Therefore, in this section, We use the CTM which take into consideration the effect of capacity 
drop which is due to microscopic phenomena such as forced lane changes at a bottleneck (Y. 
Zhang and Ioannou 2017a) and the decreasing discharging flow of the road section, then 
consider all possible traffic flow scenarios, identify all equilibrium points and analyze their 
stability properties for a single road section, then extend the results to arbitrary number of 
sections under different traffic demand levels and capacity constraints as well as under all initial 
density conditions, based on which the design of the VSL controller which guarantees global 
stability of the closed-loop system with complete CTM and under all possible operating 
scenarios is perform in the next section. 

Stability of Traffic Flow in a Single-Section Road Segment 

Consider a single road section of unit length with an inflow 𝑞1 and outflow 𝑞2, expected to 
meet a demand of flow 𝑑 as shown in Figure 77. 
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Figure 77. Single Road Section 

We assume that the vehicle density 𝜌 is uniform along the section, i.e., it is independent of 
distance from the entrance to the exit of the section and does not vary across the lanes in the 
vertical direction. Under these assumptions, the evolution of 𝜌 with respect to time is given by 
the following differential equation: 

Where 

and the constants in equation (40)-(41)are defined as follows: 

• 𝐶: the capacity of the road section. 

• 𝑤: the back propagation speed. 

• 𝜌𝑗: jam density, the highest density possible, at which 𝑞1 = 0. 

• 𝑣𝑓: free flow speed of the road section. 

• �̃�: the rate that the outflow 𝑞2 decreases with 𝜌, when 𝜌 ≥ 𝜌𝑐. 

• �̃�𝑗: the jam density associated with outflow 𝑞2. 

• 𝜌𝑐: the critical density of the road section, at which 𝑣𝑓𝜌𝑐 = 𝑤(𝜌
𝑗 − 𝜌𝑐) =

�̃�(�̃�𝑗 − 𝜌𝑐) = 𝐶. 

• 𝐶𝑑: the downstream capacity. 

 �̇� = 𝑞1 − 𝑞2, 0 ≤ 𝜌(0) ≤ 𝜌
𝑗 , (40) 

 𝑞1 = min{𝑑, 𝐶, 𝑤(𝜌𝑗 − 𝜌)},

𝑞2 = {
min{𝑣𝑓𝜌, �̃�(�̃�

𝑗 − 𝜌), (1 − 𝜖(𝜌))𝐶𝑑} if 𝐶𝑑 < 𝐶

min{𝑣𝑓𝜌, �̃�(�̃�
𝑗 − 𝜌), 𝐶𝑑} otherwise

,

𝑣𝑓𝜌𝑐 = 𝑤(𝜌𝑗 − 𝜌𝑐) = �̃�(�̃�
𝑗 − 𝜌𝑐) = 𝐶,

0 < 𝜌𝑐 < 𝜌
𝑗 , 0 < �̃� < 𝑤, 𝑣𝑓 > 0,

𝜖(𝜌) = {
0 if 0 ≤ 𝜌 ≤

𝐶𝑑
𝑣𝑓

𝜖0 otherwise

,

 

(41) 
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In equation (41), the inflow 𝑞1 is dictated by the upstream demand 𝑑 as well as the potential 

ability of the section to absorb traffic flow, which is the value min{𝐶,𝑤(𝜌𝑗 − 𝜌)}. If 𝜌 ≤ 𝜌𝑐, the 

section can absorb as much flow as the capacity 𝐶, however if 𝜌 > 𝜌𝑐, the section’s ability to 

absorb upstream flow decreases with 𝜌 at a rate 𝑤. When 𝜌 = 𝜌𝑗 , 𝑞1 = 0 as the section is 
completely congested. The outflow 𝑞2 is dictated by the ability of the section to send traffic 
flow to downstream and the downstream capacity. When 𝜌 ≤ 𝜌𝑐, the section’s ability to send 
traffic flow increases with 𝜌, but when 𝜌 > 𝜌𝑐, this ability decreases with 𝜌 at a rate �̃� 
(Lebacque 2003; Claudio Roncoli, Papageorgiou, and Papamichail 2015; Srivastava, Jin, and 

Lebacque 2015; Srivastava and Jin 2016). Since 𝑤 > �̃�, we have �̃�(�̃�𝑗 − 𝜌) > 𝑤(𝜌𝑗 − 𝜌) for all 

𝜌 > 𝜌𝑐, which captures the phenomenon that if the downstream segment has enough capacity, 
the density in a congested road section upstream will eventually decrease to a value less than 

or equal to 𝜌𝑐. The capacity of the downstream segment is 𝐶𝑑. If 𝐶𝑑 < 𝐶 and 𝜌 ≤
𝐶𝑑

𝑣𝑓
, then the 

outflow 𝑞2 = 𝑣𝑓𝜌 can increase up to 𝐶𝑑. However, when 𝜌 >
𝐶𝑑

𝑣𝑓
, the section generates more 

flow than 𝐶𝑑, a queue will form at the outlet, which may cause forced lane changes which in 
turn reduce the flow speed leading to the reduction of flow to lower than the capacity 𝐶𝑑 i.e., 
to (1 − 𝜖0)𝐶𝑑 (Y. Zhang and Ioannou 2017a; H.-Y. Jin and Jin 2015). This phenomenon is known 
as capacity drop. The original CTM is modified to include the capacity drop effect as shown in 
equation (41). The model (40)-(41) with 𝜖0 = 0 is the CTM of (Daganzo 1994). The 𝜖0 > 0 
denotes the level of capacity drop, in which case, despite the availability of flow, 𝑞2 is restricted 
from reaching the capacity 𝐶𝑑. Note that capacity drop can only occur when the downstream 
capacity 𝐶𝑑 is lower than the capacity of the section 𝐶. In system (40)-(41), we model the 
capacity drop using a reduction in the downstream capacity 𝐶𝑑 which has been verified by 
microscopic simulations using VISSIM in (Y. Zhang and Ioannou 2017a). The modeling of 
capacity drop has been discussed in (Kontorinaki et al. 2016) more extensively where different 
models are considered. These models do not change the methodology and results of this 
section, which can be easily extended to different capacity drop models. 

The purpose of this subsection is to analyze the stability properties of the model (40)-(41). Since 
these properties will depend on the characteristics of the road section defined by the constants 
𝐶, 𝐶𝑑, the demand 𝑑 which could vary and the magnitude of capacity drop 𝜖0 which may 
depend on microscopic effects (Y. Zhang and Ioannou 2017a; Kontorinaki et al. 2016), the 
following five possible operating scenarios are identified and represented by the sets 𝛺𝑖, 𝑖 =

1,2, . . . ,5. The union of these sets ⋃ 𝛺𝑖
5
𝑖=1 , as shown in Figure 78, covers all possible situations. 

Let 𝐼 = (𝐶𝑑, 𝐶, 𝑑, 𝜖0) be the state of the road section. We analyze the stability properties of the 
dynamical model (40)-(41) when 𝐼 ∈ 𝛺𝑖, 𝑖 = 1,2, . . . ,5. Theorem 1.3 presents the results of the 
analysis. 
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Figure 78. All Possible Operating Scenarios 

Theorem 1.3. For constant but otherwise arbitrary demand 𝑑, we have the following results: 

a) Let 𝐼 ∈ 𝛺1. Then ∀𝜌(0) ∈ [0, 𝜌𝑗], 𝜌(𝑡) converges exponentially fast to 
𝑑

𝑣𝑓
. 

b) Let 𝐼 ∈ 𝛺2. Then 

– ∀𝜌(0) ∈ [0,
𝐶𝑑

𝑣𝑓
], 𝜌(𝑡) converges exponentially fast to 

𝑑

𝑣𝑓
=
(1−𝜖0)𝐶𝑑

𝑣𝑓
. 

– ∀𝜌(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗 −

𝑑

𝑤
], 𝜌(𝑡) = 𝜌(0), ∀𝑡 ≥ 0. 

– ∀𝜌(0) ∈ (𝜌𝑗 −
𝑑

𝑤
, 𝜌𝑗], 𝜌(𝑡) converges exponentially fast to 𝜌𝑗 −

𝑑

𝑤
= 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
. 

c) Let 𝐼 ∈ 𝛺3. Then 

– ∀𝜌(0) ∈ [0,
𝐶𝑑

𝑣𝑓
], 𝜌(𝑡) converges exponentially fast to 

𝑑

𝑣𝑓
. 

– ∀𝜌(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗], 𝜌(𝑡) converges exponentially fast to 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
. 

d) Let 𝐼 ∈ 𝛺4. Then ∀𝜌(0) ∈ [0, 𝜌𝑗], 𝜌(𝑡) converges exponentially fast to 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
. 

e) Let 𝐼 ∈ 𝛺5. Then ∀𝜌(0) ∈ [0, 𝜌𝑗], 𝜌(𝑡) converges exponentially fast to 
min{𝑑,𝐶}

𝑣𝑓
. 

Proof. a) When 𝐼 ∈ 𝛺1, we plot the relationship of 𝑞1, 𝑞2 given by equation (41) in Figure 79. 
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Figure 79. Fundamental Diagram for I ∈ Ω_1 

From the density equation (40), the equilibrium points of the system are the values of 𝜌 for 
which �̇� = 0, which happens when 𝑞1 = 𝑞2. It is clear from Figure 79 that the only intersection 

of 𝑞1 and 𝑞2 is the point 𝜌𝑒 =
𝑑

𝑣𝑓
, which implies that this is the only equilibrium of 𝜌 in the 

region [0, 𝜌𝑗] of feasible values of 𝜌. We define the Lyapunov function 

𝑉(𝜌) =
(𝜌 − 𝑑/𝑣𝑓)

2

2
, 

whose time derivative 

�̇�(𝜌) = (𝜌 −
𝑑

𝑣𝑓
) �̇� = −(𝜌 −

𝑑

𝑣𝑓
) (𝑞2 − 𝑞1). 

We show in Appendix C that 

�̇� ≤ −𝛼 (𝜌 −
𝑑

𝑣𝑓
)

2

, 

where 𝛼 = min{𝑣𝑓 ,
(1−𝜖0)𝐶𝑑−𝑑

𝜌𝑗−𝑑/𝑣𝑓
,
(�̃�−𝑤)[𝜌𝑐−(𝜌

𝑗−
𝑑

𝑤
)]

𝜌𝑗−𝑑/𝑣𝑓
} > 0. Hence 𝜌 converges exponentially fast to 

𝑑

𝑣𝑓
 with a rate greater than or equal to 𝛼 for all possible initial conditions in [0, 𝜌𝑗] (P. A. 

Ioannou and Sun 2012). The rate of convergence is guaranteed to be greater than or equal to 𝛼 

as it is clear from the value of 𝑉 and �̇�. 

b) When 𝐼 ∈ 𝛺2, the plot of 𝑞1, 𝑞2 generated from equation (41) is given in Figure 80. 
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Figure 80. Fundamental Diagram for I ∈ Ω_2 

In this case, 𝑞1 and 𝑞2 intersect at one point 𝜌 =
𝑑

𝑣𝑓
 and 𝑞1 = 𝑞2 for all 𝜌 ∈ (

𝐶𝑑

𝑣𝑓
, 𝜌𝑗 −

𝑑

𝑤
]. 

Therefore, we have one isolated equilibrium point 𝜌1
𝑒 =

𝑑

𝑣𝑓
 and an equilibrium manifold which is 

the interval (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗 −

𝑑

𝑤
]. 

From Figure 80, we know that ∀𝜌 ∈ [0,
𝐶𝑑

𝑣𝑓
] ,  𝑞1 = (1 − 𝜖0)𝐶𝑑 = 𝑑 and 𝑞2 = 𝑣𝑓𝜌 which gives 

�̇� = −𝑣𝑓𝜌 + 𝑑,  ∀𝜌(0) ∈ [0,
𝐶𝑑
𝑣𝑓
], 

whose solution is 

𝜌(𝑡) =
𝑑

𝑣𝑓
+ (𝜌(0) −

𝑑

𝑣𝑓
) 𝑒−𝑣𝑓𝑡 ≤

𝐶𝑑
𝑣𝑓
. 

Hence ∀𝜌(0) ∈ [0,
𝐶𝑑

𝑣𝑓
] we have 𝜌(𝑡) ∈ [0,

𝐶𝑑

𝑣𝑓
] ,  ∀𝑡 ≥ 0 and according to the solution above, 

𝜌(𝑡) converges exponentially fast to 
𝑑

𝑣𝑓
=
(1−𝜖0)𝐶𝑑

𝑣𝑓
. 

For 𝜌(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗 −

𝑑

𝑤
], we have 𝑞1 = 𝑞2, therefore �̇� = 0, which implies that 𝜌(𝑡) =

𝜌(0),  ∀𝑡 ≥ 0, for all 𝜌(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗 −

𝑑

𝑤
]. 

If 𝜌(0) ∈ (𝜌𝑗 −
𝑑

𝑤
, 𝜌𝑗], it is clear from Figure 80 that 𝑞2 > 𝑞1 which implies that �̇� < 0 until 

𝜌(𝑡) = 𝜌𝑗 −
𝑑

𝑤
 at which time �̇� = 0. This implies that for all 𝜌(0) ∈ (𝜌𝑗 −

𝑑

𝑤
, 𝜌𝑗], 𝜌(𝑡) 

converges at least asymptotically with time to 𝜌𝑗 −
𝑑

𝑤
. In Appendix C we show that this rate of 

convergence is exponential, i.e., 
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|𝜌(𝑡) − (𝜌𝑗 −
𝑑

𝑤
)| ≤ 𝑐0𝑒

−𝛼𝑡, ∀𝜌(0) ∈ (𝜌𝑗 −
𝑑

𝑤
, 𝜌𝑗], 

where 𝑐0 > 0 and 𝛼 = min{𝑤,𝑤 − �̃�} > 0. 

c) When 𝐼 ∈ 𝛺3, 𝑞1 and 𝑞2 are plotted in Figure 81. 

 

Figure 81. Fundamental Diagram for I ∈ Ω_3 

From Figure 81, it is clear that the only values of 𝜌 for which 𝑞1 = 𝑞2 are 
𝑑

𝑣𝑓
 and 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, 

which implies that the system has two isolated equilibrium points 𝜌1
𝑒 =

𝑑

𝑣𝑓
 and 𝜌2

𝑒 = 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
 when 𝐼 ∈ 𝛺3. We show below that 𝜌1

𝑒 =
𝑑

𝑣𝑓
 is exponentially stable with a region of 

attraction [0,
𝐶𝑑

𝑣𝑓
] and 𝜌2

𝑒 = 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
 is exponentially stable with a region of attraction 

(
𝐶𝑑

𝑣𝑓
, 𝜌𝑗]. 

For 𝜌(0) ∈ [0,
𝐶𝑑

𝑣𝑓
], we have 𝑞1 = 𝑑, 𝑞2 = 𝑣𝑓𝜌, therefore �̇� = −𝑣𝑓𝜌 + 𝑑, ∀𝜌(0) ∈ [0,

𝐶𝑑

𝑣𝑓
], whose 

solution is 

𝜌 = 𝑒−𝑣𝑓𝑡 (𝜌(0) −
𝑑

𝑣𝑓
) +

𝑑

𝑣𝑓
, 

which implies that 𝜌(𝑡) ∈ [0,
𝐶𝑑

𝑣𝑓
] , ∀𝑡 ≥ 0 and 𝜌(𝑡) converges exponentially fast to 𝜌1

𝑒 =
𝑑

𝑣𝑓
. 

Consider the equilibrium point 𝜌2
𝑒 and choose the Lyapunov function 
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𝑉(𝜌) =
(𝜌 − 𝜌2

𝑒)2

2
, 

then �̇� = −(𝜌 − 𝜌2
𝑒)(𝑞2 − 𝑞1). We show in Appendix C that 

�̇� ≤ −𝛼(𝜌 − 𝜌2
𝑒)2, 

where 𝛼 = min{
𝑑−(1−𝜖0)𝐶𝑑

𝜌2
𝑒−𝐶𝑑/𝑣𝑓

, 𝑤, (𝑤 − �̃�)} > 0,  ∀𝜌(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗] which implies exponential 

convergence to the equilibrium point 𝜌2
𝑒 = 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, ∀𝜌(0) ∈ (

𝐶𝑑

𝑣𝑓
, 𝜌𝑗]. 

d) When 𝐼 ∈ 𝛺4, 𝑞1 and 𝑞2 described by equation are plotted in Figure 82. 

 

Figure 82. Fundamental Diagram for I ∈ Ω_4 

It is clear that 𝑞1 = 𝑞2 when 𝜌 = 𝜌𝑒 = 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, which is a unique equilibrium when 𝐼 ∈

𝛺4. Choose the Lyapunov function 

𝑉(𝜌) =
(𝜌 − 𝜌𝑒)2

2
, 

then �̇� = −(𝜌 − 𝜌𝑒)(𝑞2 − 𝑞1). We show in Appendix C that 

�̇� = −𝛼(𝜌 − 𝜌𝑒)2, 

where 𝛼 = min{
𝑑−𝐶𝑑

𝜌𝑒
,
𝑑−(1−𝜖0)𝐶𝑑

𝜌𝑒−𝐶𝑑/𝑣𝑓
, 𝑤, (𝑤 − �̃�)} > 0, ∀𝜌 ∈ [0, 𝜌𝑗], which implies exponential 

convergence to the equilibrium point 𝜌𝑒 = 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, ∀𝜌(0) ∈ [0, 𝜌𝑗]. 

e) When 𝐼 ∈ 𝛺5, 𝑞1 and 𝑞2 described by equation (41) are plotted in Figure 83.  
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Figure 83. Fundamental Diagram for I ∈ Ω_5 

In this case it is clear that there is only one equilibrium point 𝜌𝑒 =
min{𝑑,𝐶}

𝑣𝑓
, depending whether 

the demand 𝑑 < 𝐶 or 𝑑 ≥ 𝐶. We choose the Lyapunov function 

𝑉(𝜌) =
(𝜌 − 𝜌𝑒)2

2
 

and show in Appendix C that 

�̇� = −𝛼(𝜌 − 𝜌𝑒)2, 

where 𝛼 = min{𝑣𝑓 ,
(�̃�−𝑤)[𝜌𝑐−(𝜌

𝑗−
𝑑

𝑤
)]

𝜌𝑗−𝑑/𝑣𝑓
} > 0 if 𝑑 < 𝐶 and 𝛼 = min{𝑣𝑓 , (𝑤 − �̃�)} > 0 if 𝑑 ≥ 𝐶, 

∀𝜌 ∈ [0, 𝜌𝑗], which implies exponential convergence to the equilibrium point 𝜌𝑒 =
min{𝑑,𝐶}

𝑣𝑓
, 

∀𝜌(0) ∈ [0, 𝜌𝑗]. 

Stability of Traffic Flow in a Multi-Section Road Segment 

The equilibrium points and their stability analysis of the single section CTM can be extended to 
the general 𝑁 section case. Consider a road segment which is divided into 𝑁 (𝑁 ≥ 2) sections 
as in Figure 84. Without loss of generality, we assume that the geometry of all sections is 
identical and each section has unit length. In the single section case, we assume the density 𝜌 
to be the same along the section. We extend this to the case of multiple sections 1 to 𝑁 where 
each section has its own density. The capacity of all sections remains the same constant 𝐶 and 
the capacity at the outlet is 𝐶𝑑 whereas the demand 𝑑 appears at the entrance of section 1 as 
shown in Figure 84. It is well-known that the CTM in the multiple section case may include 
discontinuities in the values of densities when transitioning from one section to another. The 
control objective to be achieved via VSL, will require all section densities to converge to the 
same value in order to have smooth flow. 
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Figure 84. Multiple Section Road Network 

Let 𝜌 = [𝜌1, 𝜌2, . . . , 𝜌𝑁]
𝑇 be the state vector of the traffic flow system, where 𝜌𝑖  represents the 

density in section 𝑖. Section 𝑖 can absorb the flow min{𝐶,𝑤(𝜌𝑗 − 𝜌𝑖)} from upstream and can 

generate the flow min{𝑣𝑓𝜌𝑖 , �̃�(�̃�
𝑗 − 𝜌𝑖)} into the downstream section. Therefore, the 

dynamics of the vehicle densities in each section are formulated as: 

where 

𝜖(𝜌𝑁) = {
0 if 0 ≤ 𝜌𝑁 ≤

𝐶𝑑
𝑣𝑓

𝜖0 otherwise

 

and 0 < 𝜖0 < 1 denotes the level of capacity drop at the outlet of the 𝑁th section. Since we 
assume that the capacities of all sections 1 to 𝑁 have the same value 𝐶, the capacity drop can 
only happen at the outlet of section 𝑁, when 𝐶𝑑 < 𝐶, which affects the value of 𝑞𝑁+1. We know 
that ∀𝑡 ≥ 0, the density vector 𝜌(𝑡) belongs to the feasible set 

𝑆 = {𝜌|0 ≤ 𝜌𝑖 ≤ 𝜌
𝑗 , for 𝑖 = 1,2, . . . , 𝑁}. 

Let 𝜌𝑒 = [𝜌1
𝑒 , 𝜌2

𝑒 , . . . , 𝜌𝑁
𝑒 ]𝑇 be the equilibrium vector of system (42) obtained by setting �̇�𝑖 = 0, 

for 𝑖 = 1,2,⋯ ,𝑁. Let 𝑞𝑖
𝑒 denote the value of 𝑞𝑖 when 𝜌 = 𝜌𝑒, then the equilibrium condition of 

system (42) is given by 

due to �̇�𝑖 = 𝑞𝑖 − 𝑞𝑖+1 = 0, for 𝑖 = 1,2,⋯ ,𝑁. 

Define the vector of initial condition 𝜌(0) = [𝜌1(0), 𝜌2(0), . . . , 𝜌𝑁(0)]
𝑇 and the parameter 

vector 𝐼 = (𝐶𝑑, 𝐶, 𝑑, 𝜖0), whose partition sets are the same as in the case of a single section and 
are shown in Figure 78. Then the equilibrium states of (42) for all possible 𝐼 in the sets 𝛺1 to 𝛺5 
and corresponding stability properties are given by the following theorem. 

 �̇�𝑖 = 𝑞𝑖 − 𝑞𝑖+1, 0 ≤ 𝜌𝑖(0) ≤ 𝜌
𝑗 ,for 𝑖 = 1,2, . . . , 𝑁,

𝑞1 = min{𝑑, 𝐶, 𝑤(𝜌𝑗 − 𝜌1)},

𝑞𝑖 = min{𝑣𝑓𝜌𝑖−1, �̃�(�̃�
𝑗 − 𝜌𝑖−1), 𝐶, 𝑤(𝜌

𝑗 − 𝜌𝑖)}, 𝑖 = 2, . . . , 𝑁,

𝑞𝑁+1 = {
min{𝑣𝑓𝜌𝑁 , �̃�(�̃�

𝑗 − 𝜌𝑁), (1 − 𝜖(𝜌𝑁))𝐶𝑑} if 𝐶𝑑 < 𝐶

min{𝑣𝑓𝜌𝑁 , �̃�(�̃�
𝑗 − 𝜌𝑁), 𝐶𝑑} otherwise

,

 

(42) 

 𝑞1
𝑒 = 𝑞2

𝑒 =. . . = 𝑞𝑁+1
𝑒 , (43) 
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Theorem 1.4. Let 𝟏 = [1,1, . . . ,1]𝑇 be a vector with 𝑁 elements each equal to 1. For constant 
but otherwise arbitrary demand 𝑑, we have the following results: 

a) Let 𝐼 ∈ 𝛺1. The equilibrium state of (42) is equal to 𝜌𝑒 =
𝑑

𝑣𝑓
× 𝟏 and it is exponentially 

stable, i.e for all 𝜌(0) ∈ 𝑆, 𝜌(𝑡) converges exponentially fast to 𝜌𝑒 =
𝑑

𝑣𝑓
× 𝟏. 

b) Let 𝐼 ∈ 𝛺2. System (42) has an isolated equilibrium state 𝜌𝑒 =
𝑑

𝑣𝑓
× 𝟏, which is locally 

exponentially stable, and an infinite number of equilibrium states defined by the set 

𝑆𝑒 = {(𝜌𝑗 −
𝑑

𝑤
) × 𝟏} ∪ {𝜌|𝜌𝑖 =

𝑑

𝑣𝑓
, 𝑖 = 1,2, . . . , 𝑁 − 1,

𝐶𝑑

𝑣𝑓
< 𝜌𝑁 < 𝜌

𝑗 −
𝑑

𝑤
}

∪ [⋃ {𝑁−1
𝑖=1 𝜌|

𝑑

𝑣𝑓
≤ 𝜌𝑖 < 𝜌

𝑗 −
𝑑

𝑤
, 𝜌𝑘 =

𝑑

𝑣𝑓
, 1 ≤ 𝑘 < 𝑖, 𝜌𝑟 = 𝜌

𝑗 −
𝑑

𝑤
, 𝑖 < 𝑟 ≤ 𝑁}] .

 

All equilibrium states 𝜌𝑒 ∈ 𝑆𝑒 are stable in the sense that for any 𝜇 > 0, ∃𝜂 > 0, such 
that ∀𝜌(0) that satisfy ∥ 𝜌(0) − 𝜌𝑒 ∥< 𝜂, 𝜌(𝑡) converges to a 𝜌‾𝑒 ∈ 𝑆𝑒 that satisfies ∥
𝜌‾𝑒 − 𝜌𝑒 ∥< 𝜇. Furthermore, ∀𝜌(0) ∈ {𝜌|0 ≤ 𝜌𝑖 ≤ 𝐶𝑑/𝑣𝑓 , 𝑖 = 1,2, . . . , 𝑁}, 𝜌(𝑡) 

converges to 𝜌𝑒 =
𝑑

𝑣𝑓
× 𝟏 exponentially fast, and ∀𝜌(0) ∉ {𝜌|0 ≤ 𝜌𝑖 ≤ 𝐶𝑑/𝑣𝑓 , 𝑖 =

1,2, . . . , 𝑁}, ∃𝜌𝑒 ∈ {
𝑑

𝑣𝑓
× 𝟏} ∪ 𝑆𝑒, such that 𝜌(𝑡) converges to 𝜌𝑒 asymptotically with 

time. 

c) Let 𝐼 ∈ 𝛺3. System (42) has two isolated equilibrium states 𝜌𝑒1 =
𝑑

𝑣𝑓
× 𝟏 and 𝜌𝑒2 =

(𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
) × 𝟏, which are both locally exponentially stable. Furthermore, ∀𝜌(0) ∈

{𝜌|0 ≤ 𝜌𝑖 ≤ 𝐶𝑑/𝑣𝑓 , 𝑖 = 1,2, . . . , 𝑁}, 𝜌(𝑡) converges to 𝜌𝑒1 exponentially fast and ∀𝜌(0) ∉

{𝜌|0 ≤ 𝜌𝑖 ≤ 𝐶𝑑/𝑣𝑓 , 𝑖 = 1,2, . . . , 𝑁}, 𝜌(𝑡) converges to either 𝜌𝑒1 or 𝜌𝑒2 exponentially fast. 

d) Let 𝐼 ∈ 𝛺4. The equilibrium state (42) is equal to 𝜌𝑒 = (𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
) × 𝟏 and is 

exponentially stable, i.e for all 𝜌(0) ∈ 𝑆, 𝜌(𝑡) converges exponentially fast to 𝜌𝑒 =

(𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
) × 𝟏. 

e) Let 𝐼 ∈ 𝛺5. The equilibrium state of (42) is equal to 𝜌𝑒 =
min{𝑑,𝐶}

𝑣𝑓
× 𝟏 and is exponentially 

stable, i.e for all 𝜌(0) ∈ 𝑆, 𝜌(𝑡) converges exponentially fast to 𝜌𝑒 =
min{𝑑,𝐶}

𝑣𝑓
× 𝟏. 

The proof of Theorem 1.4 is given in Appendix D. 

The above stability properties show that depending on the situation classified by the operating 
scenarios 𝛺1 to 𝛺5 and initial density value in the section, the density will reach an equilibrium 
that is not always the one that corresponds to maximum flow rate. In fact, when 𝐼 ∈ 𝛺2 there 
are an infinite number of equilibrium points and when 𝐼 ∈ 𝛺3, there are two equilibrium points. 
One in the free flow region and one in the congested region depending on the initial density 
condition. The objective of feedback is to close the loop so that the system converges to a 
single equilibrium point for the density which also corresponds to the maximum possible flow 
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rate and speed. The feedback control variable is variable speed limit that provides speed 
commands to the upstream section in order to control the inflow to the section in a way that 
guarantees the maximum possible outflow from the downstream section. Such a design is 
presented in the next section. 

VSL Control of the Cell Transmission Model under All Operating Conditions 

VSL Control: Single Section 

The stability analysis of the flow in Stability of Traffic Flow in a Single-Section Road Segment 
shows that if 𝐶𝑑 ≥ 𝐶, i.e., the downstream capacity is higher than the capacity of the section, 
i.e., 𝐼 ∈ 𝛺5 then the density 𝜌(𝑡) converges exponentially fast to a unique equilibrium point 
min{𝑑,𝐶}

𝑣𝑓
, which corresponds to the maximum possible flow. The steady state speed of flow in 

the section is 𝑣𝑓 and the steady state section flow will be at the maximum possible value 𝑞 =

𝑞1 = 𝑞2 = min{𝑑, 𝐶} according to the model (40)-(41). In this case no control action is needed. 
When 𝐶𝑑 < 𝐶 and 𝑑 < (1 − 𝜖0)𝐶𝑑, i.e., 𝐼 ∈ 𝛺1, the demand is lower than the dropped capacity 

of the downstream segment and therefore the density converges exponentially fast to 
𝑑

𝑣𝑓
 and 

the steady state flow speed and flow rate in the section will be 𝑣𝑓 and 𝑑 respectively. In this 

case, no control action is needed as the section operates at the maximum possible flow rate 
level dictated by the demand 𝑑. The problem arises when 𝐶𝑑 < 𝐶 and 𝑑 ≥ (1 − 𝜖0)𝐶𝑑. where 
we have the following control problem cases: 

6. (1 − 𝜖0)𝐶𝑑 = 𝑑 < 𝐶𝑑 < 𝐶, i.e., 𝐼 ∈ 𝛺2. 

7. (1 − 𝜖0)𝐶𝑑 < 𝑑 ≤ 𝐶𝑑 < 𝐶, i.e., 𝐼 ∈ 𝛺3. 

8. 𝐶𝑑 < 𝑑, 𝐶𝑑 < 𝐶, i.e., 𝐼 ∈ 𝛺4. 

In case (i) we showed in previous section that a maximum flow of 𝑑 = (1 − 𝜖0)𝐶𝑑 can be 
maintained at an infinite number of density equilibrium points specified by an isolated point 
and an equilibrium manifold, which include low and high density values with steady state 
speeds 𝑣𝑠𝑠 ≤ 𝑣𝑓. In this case, the control objective is to maintain the maximum flow of 𝑑 =

(1 − 𝜖0)𝐶𝑑 with a lowest possible density which in this case is 
𝑑

𝑣𝑓
=
(1−𝜖0)𝐶𝑑

𝑣𝑓
 with free flow 

speed 𝑣𝑓. 

In case (ii), we showed that we have two stable equilibrium points for density. One at low 

density which is equal to 
𝑑

𝑣𝑓
 and one at high density equal to 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑣𝑓
. In this case, 

maximum flow in the section corresponds to the density equilibrium point 𝜌 =
𝑑

𝑣𝑓
 therefore the 

control objective is to choose the VSL in a way that the density converges to 
𝑑

𝑣𝑓
 for all possible 

initial density conditions. 

In case (iii), there is only one equilibrium point for density which is in the high density region 
and corresponds to the steady state flow of (1 − 𝜖0)𝐶𝑑. In this case, the maximum possible 
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flow is 𝐶𝑑 and corresponds to the density of 
𝐶𝑑

𝑣𝑓
. However, the convergence of 𝜌 to 

𝐶𝑑

𝑣𝑓
 does not 

guarantee that 𝑞1 and 𝑞2 converge to 𝐶𝑑 due to the capacity drop. From equation (41) and 

Figure 82, we know that 𝑞2 is a function of 𝜌. For 𝜌 ∈ [0,
𝐶𝑑

𝑣𝑓
] , 𝑞2 = 𝑣𝑓𝜌, and for 𝜌 ∈ (

𝐶𝑑

𝑣𝑓
, �̃�𝑗 −

(1−𝜖0)𝐶𝑑

�̃�
], 𝑞2 = (1 − 𝜖0)𝐶𝑑. Therefore, we have 

lim
𝜌→(

𝐶𝑑
𝑣𝑓
)
−

𝑞2(𝜌) = lim
𝜌→

𝐶𝑑
𝑣𝑓

𝑣𝑓𝜌 = 𝐶𝑑 and lim
𝜌→(

𝐶𝑑
𝑣𝑓
)
+

𝑞2(𝜌) = lim
𝜌→

𝐶𝑑
𝑣𝑓

(1 − 𝜖0)𝐶𝑑 = (1 − 𝜖0)𝐶𝑑,
 

i.e., if 𝜌 converges to 
𝐶𝑑

𝑣𝑓
 from the left side, then 𝑞2 converges to the maximum value 𝐶𝑑. 

However, if 𝜌 converges to 
𝐶𝑑

𝑣𝑓
 from the right side, 𝑞2 converges to (1 − 𝜖0)𝐶𝑑. Therefore, the 

control objective in this case is to choose the VSL so that 𝜌(𝑡) satisfies the following conditions: 

∃𝑡0 > 0, such that ∀𝑡 ≥ 𝑡0,  𝜌(𝑡) ≤
𝐶𝑑

𝑣𝑓
 and lim𝑡→∞𝜌(𝑡) =

𝐶𝑑

𝑣𝑓
. 

Therefore for all cases (i), (ii) and (iii), the control objective is to choose the VSL control so that 

𝜌(𝑡) converges to the desired equilibrium point 
min{𝑑,𝐶𝑑}

𝑣𝑓
, and the flow rate 𝑞1 and 𝑞2 converge 

to the maximum possible level which is equal to min{𝑑, 𝐶𝑑}. 

A reasonable control action is to use VSL control to restrict the incoming flow 𝑞1 to the level 
that is within the capacity constraints of the section at the bottleneck so that the density and 
flow rate converge to the desired possible values. 

 

Figure 85. Road Section with VSL Control 

As shown in Figure 85, we apply the VSL command 𝑣 in the upstream segment of the section 
under consideration, which is referred to as the VSL zone. All vehicles are asked to follow the 
speed limit 𝑣 in the VSL zone and follow the free flow speed limit 𝑣𝑓 inside the section. 

Decreasing the speed limit leads to lower flow 𝑞1 from the VSL zone to the section as shown in 
Figure 85. Figure 86 shows how the changing of the speed limit 𝑣 can control the flow rate 𝑞1 
entering the section through a nonlinear relationship. Suppose the VSL zone has similar 
characteristics as the road section under consideration. If the VSL command is set to 𝑣 < 𝑣𝑓, 

the fundamental diagram of the VSL zone is distorted such that the parameters 𝜌𝑗 , 𝑤, �̃� remain 



 128 

unchanged, while the maximum possible flow is decreased to 
𝑣𝑤𝜌𝑗

𝑣+𝑤
, as shown in Figure 86, 

obtained by simple geometric considerations (H.-Y. Jin and Jin 2015; Hadiuzzaman and Qiu 
2013; Csikós and Kulcsár 2017). 

 

Figure 86. Fundamental Diagram of the VSL Zone 

In Figure 86, the red line 𝑠𝑣 denotes the flow rate that the VSL zone can absorb from upstream 
under different densities in the VSL zone and the blue line 𝑑𝑣 denotes the flow rate that the VSL 
zone sends to the section under consideration. However, since the single section model does 
not include the density in the VSL zone, the flow into the road section from the VSL zone is 

assumed to be min{𝑑,
𝑣𝑤𝜌𝑗

𝑣+𝑤
}, where 

𝑣𝑤𝜌𝑗

𝑣+𝑤
 is the maximum possible flow in the VSL zone under 

speed limit 𝑣. Then the density 𝜌 in the section is given by the following equation: 

We design a VSL controller to overcome capacity drop and achieve the control objectives in all 
cases, by first considering the most complicated case 𝐼 ∈ 𝛺4, in which 𝑑 > 𝐶𝑑. Since in equation 

(44), 
𝑣𝑤𝜌𝑗

𝑣+𝑤
 is the only term in 𝑞1 that depends on 𝑣, we derive the VSL controller using feedback 

linearization under the assumption that 𝑞1 =
𝑣𝑤𝜌𝑗

𝑣+𝑤
. Then we show in Theorem Theorem 1.5 

that, for the general equation where 𝑞1 = min{𝑑,
𝑣𝑤𝜌𝑗

𝑣+𝑤
, 𝐶, 𝑤(𝜌𝑗 − 𝜌)}, the derived controller 

can still guarantee that 𝜌 converges to 
𝐶𝑑

𝑣𝑓
 and 𝑞1, 𝑞2 converge to the maximum value 𝐶𝑑. 

Furthermore, we also show in Theorem Theorem 1.5 below that, when 𝐼 ∈ ⋃ 𝛺𝑖
3
𝑖=1 , i.e., 𝑑 ≤

 �̇� = 𝑞1 − 𝑞2,  0 ≤ 𝜌(0) ≤ 𝜌
𝑗 ,

𝑞1 = min{𝑑,
𝑣𝑤𝜌𝑗

𝑣 + 𝑤
, 𝐶,𝑤(𝜌𝑗 − 𝜌)},

𝑞2 = min{𝑣𝑓𝜌, �̃�(�̃�
𝑗 − 𝜌), (1 − 𝜖(𝜌))𝐶𝑑}.

 

(44) 
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𝐶𝑑, the same controller guarantees the convergence of 𝜌 to the desired equilibrium point 
𝑑

𝑣𝑓
 

and the convergence of 𝑞1, 𝑞2 to the maximum level 𝑑. 

As discussed above, when 𝐼 ∈ 𝛺4, the desired equilibrium point is 𝜌𝑒 =
𝐶𝑑

𝑣𝑓
. Define the error 

state 𝑥 = 𝜌 −
𝐶𝑑

𝑣𝑓
 and recall that the control objective is to force 𝜌 to converge to 

𝐶𝑑

𝑣𝑓
, i.e., 𝑥 

converge to 0 from the left side (𝜌 ≤
𝐶𝑑

𝑣𝑓
). If 𝑥(0) ≤ 0, that is 𝜌(0) ≤

𝐶𝑑

𝑣𝑓
, we choose 𝑣 so that 

where 𝜆 > 0 is a design constant to be selected. Thus, we have 

which implies that ∀𝑥(0) ≤ 0 and 𝑡 ≥ 0, 𝑥(𝑡) ≤ 0 and 𝑥 converges to 0 exponentially fast. 

Since we assume that 𝑞1 =
𝑣𝑤𝜌𝑗

𝑣+𝑤
, solving equation (45) for 𝑣, we have, 

whose denominator is guaranteed to be greater than 0 as we show in detail in the proof of 
Theorem Theorem 1.5. 

If 𝑥(0) > 0, i.e., 𝜌(0) >
𝐶𝑑

𝑣𝑓
 we choose 𝑣 such that 

where 𝛿1 > 0 is a design constant. Then we have ∀𝑥(0) > 0 

�̇� = �̇� = 𝑞1 − 𝑞2 = −𝜆(𝑥 + 𝛿1). 

Thus 𝑥 will decrease exponentially toward the value −𝛿1 < 0. At some finite time 𝑡 = 𝑡0 > 0, 

𝑥(𝑡0) = −𝛿2, i.e., 𝜌(𝑡0) =
𝐶𝑑

𝑣𝑓
− 𝛿2, where 0 < 𝛿2 < min{𝛿1,

𝐶𝑑

𝑣𝑓
}, thus 𝜌(𝑡0) is in the region of 

(45), (47). At the time instant 𝑡 = 𝑡0, we have 𝑥(𝑡) ≤ 0 and controller (47) is switched on which 
guarantees as shown above that 𝑥(𝑡) will converge to zero exponentially fast. Assuming that 

𝑞1 =
𝑣𝑤𝜌𝑗

𝑣+𝑤
 and solving (48) for 𝑣, we have 

𝑣 =
𝑤(𝑞2 − 𝜆(𝑥 + 𝛿1))

𝑤𝜌𝑗 − (𝑞2 − 𝜆(𝑥 + 𝛿1))
. 

The use of the design constant 𝛿1 is to reduce the incoming flow via VSL so that the density of 

the section reduces to be within the set [0,
𝐶𝑑

𝑣𝑓
], which guarantees convergence to the 

equilibrium point which corresponds to maximum flow and speed. The choice of 𝛿1 will depend 

 𝑞1 = 𝑞2 − 𝜆𝑥, (45) 

 �̇� = �̇� = 𝑞1 − 𝑞2 = −𝜆𝑥, (46) 

 
𝑣 =

𝑤(𝑞2 − 𝜆𝑥)

𝑤𝜌𝑗 − (𝑞2 − 𝜆𝑥)
, 

(47) 

 𝑞1 = 𝑞2 − 𝜆(𝑥 + 𝛿1), (48) 
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on how aggressively we want the density to move to the “good” free speed region. Using the 
above VSL controller derivation and assuming that the speed is not allowed to go below zero or 
exceed the speed limit 𝑣𝑓, the following equations summarize the VSL controller for the section 

under the assumption that 𝑞1 =
𝑣𝑤𝜌𝑗

𝑣+𝑤
, which we will relax subsequently. When 𝐼 ∈ ⋃ 𝛺𝑖

4
𝑖=1 , the 

VSL control is generated as follows: 

where 𝑥 = 𝜌 −
𝐶𝑑

𝑣𝑓
, and 

𝛿1 > 0,0 < 𝛿2 < min{𝛿1,
𝐶𝑑
𝑣𝑓
},  0 < 𝜆 <

𝑣𝑓𝑤𝜌
𝑗

𝐶𝑑
 

are design constants and med{⋅} denotes the median of the numbers, which indicates that the 

VSL command saturates at the upper bound 𝑣𝑓 and the lower bound 0. The upper bound 
𝑣𝑓𝑤𝜌

𝑗

𝐶𝑑
 

of 𝜆 guarantees that the denominator of 𝑣 is not 0, which we will show in the proof of 
Theorem 1.5. The shape of the function 𝑣 as it varies with 𝜌 is shown in Figure 87. 

 

Figure 87. Switching Logic of VSL Controller 

 
𝑣‾1 =

𝑤[𝑞2 − 𝜆(𝑥 + 𝛿1)]

𝑤𝜌𝑗 − [𝑞2 − 𝜆(𝑥 + 𝛿1)]
,

𝑣‾2 =
𝑤(𝑞2 − 𝜆𝑥)

𝑤𝜌𝑗 − (𝑞2 − 𝜆𝑥)
,

𝑣𝑖 = med{0, 𝑣‾𝑖, 𝑣𝑓}, 𝑖 = 1,2,

𝑣 =

{
  
 

  
 𝑣1 if 𝜌(0) >

𝐶𝑑
𝑣𝑓

 and 𝜌(𝑡) >
𝐶𝑑
𝑣𝑓
− 𝛿2

𝑣2 if 𝜌(0) >
𝐶𝑑
𝑣𝑓

 and 𝜌(𝑡) =
𝐶𝑑
𝑣𝑓
− 𝛿2

𝑣2 if 𝜌(0) ≤
𝐶𝑑
𝑣𝑓

 and 𝜌(𝑡) ≤
𝐶𝑑
𝑣𝑓

,

 

(49) 
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For 𝐼 ∈ 𝛺5, the VSL control is 

In Theorem 1.5 below, we show that the above controller also works for any value of 𝑞1 =

min{𝑑,
𝑣𝑤𝜌𝑗

𝑣+𝑤
, 𝐶, 𝑤(𝜌𝑗 − 𝜌)}, and guarantees the exponential convergence of the density to the 

desired equilibrium point and the exponential convergence of the flow rate to the maximum 

possible value of 𝑞1 = 𝑞2 = 𝐶𝑑. Furthermore, when 𝐼 ∈ ⋃ 𝛺𝑖
3
𝑖=1 , i.e., 𝑑 ≤ 𝐶𝑑, controller (49) 

guarantees the exponential convergence of 𝜌 to the desired equilibrium point 
𝑑

𝑣𝑓
 and the 

convergence of 𝑞1, 𝑞2 to the maximum level 𝑑. 

Theorem 1.5. For 𝑞1 = min{𝑑,
𝑣𝑤𝜌𝑗

𝑣+𝑤
, 𝐶, 𝑤(𝜌𝑗 − 𝜌)}, we have the following: 

a) Let 𝐼 ∈ ⋃ 𝛺𝑖
4
𝑖=1 , i.e., 𝐶𝑑 < 𝐶, and consider the VSL controller (49). The closed-loop system 

(44), (49) has a unique equilibrium point 𝜌𝑒 =
min{𝑑,𝐶𝑑}

𝑣𝑓
. In addition, ∀𝜌(0) ∈ [0,

𝐶𝑑

𝑣𝑓
], 𝜌(𝑡) 

converges to 𝜌𝑒 exponentially fast and ∀𝜌(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗], 𝜌(𝑡) decreases to 

𝐶𝑑

𝑣𝑓
− 𝛿2 

exponentially fast which brings it to the region where 𝜌(𝑡) converges to 𝜌𝑒 exponentially 
fast. The flow rate and speed converge to the desired values of min{𝑑, 𝐶𝑑} and 𝑣𝑓 

respectively with the same rate. 

b) Let 𝐼 ∈ 𝛺5, i.e., 𝐶𝑑 ≥ 𝐶, and consider the VSL controller (50). System (44), (50) has a 

unique equilibrium point 𝜌𝑒 =
min{𝑑,𝐶}

𝑣𝑓
. In addition, ∀𝜌(0) ∈ [0, 𝜌𝑗], 𝜌(𝑡) converges to 𝜌𝑒 

exponentially fast. The flow rate and speed converge exponentially fast to the desired 
values of min{𝑑, 𝐶} and 𝑣𝑓 respectively. 

The proof of Theorem 1.5 is given in Appendix E. Theorem 1.5 shows that the VSL controller 

guarantees that for all cases 𝐼 ∈ ⋃ 𝛺𝑖
5
𝑖=1 , the density, flow rate and flow speed converge 

exponentially fast to unique values that correspond to maximum possible flow through the 

section for all initial density conditions within the set [0, 𝜌𝑗]. Theorem 1.5 shows in an 

analytically rigorous manner that VSL control can stabilize the flow in the section and force it to 
converge to the maximum possible flow under any situation. This maximum flow depends on 
the characteristics and relationships between demand 𝑑 and capacities 𝐶, 𝐶𝑑 as well as capacity 
drop level 𝜖0. It is also clear from the analysis of the open-loop system that without the VSL 
control the flow can reach steady states that do not correspond to maximum possible flow. 

From equation (49), we can see that the logic of the VSL controller is to deactivate the capacity 
drop with 𝑣1 by suppressing the inflow sufficiently and then force the system state to converge 
to the desired equilibrium point with 𝑣2. This logic and the feedback linearization technique can 
always be used to design a VSL controller if different capacity drop models such as those 
presented in (Kontorinaki et al. 2016) are included in the CTM. 

 𝑣 = 𝑣𝑓 . (50) 
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VSL Control: Multiple Sections 

The analysis in Stability of Traffic Flow in a Multi-Section Road Segment shows that the stability 
properties of the open-loop 𝑁-section system are similar to those of the single-section system. 
For the cases 𝐼 ∈ 𝛺1 and 𝐼 ∈ 𝛺5, 𝜌(𝑡) converges exponentially fast to the unique equilibrium 

state 𝜌𝑒 =
𝑑

𝑣𝑓
× 𝟏 and 𝜌𝑒 =

min{𝑑,𝐶}

𝑣𝑓
× 𝟏 respectively, which corresponds to the maximum 

possible flow rate. In these two cases no control action is needed. 

When 𝐼 ∈ 𝛺2 ∪ 𝛺3, the control objective is to stabilize the system at the equilibrium state 𝜌𝑒 =
𝑑

𝑣𝑓
× 𝟏, at which the maximum possible flow rate 𝑑 is achieved and the densities in each section 

are stabilized at the lowest possible value whereas the speed of flow converges to the free flow 
speed 𝑣𝑓. 

When 𝐼 ∈ 𝛺4, the maximum possible flow rate is 𝐶𝑑, which corresponds to the equilibrium 

state 𝜌𝑒 =
𝐶𝑑

𝑣𝑓
× 𝟏. From equation (42), we know that due to capacity drop 

lim
𝜌𝑁→(

𝐶𝑑
𝑣𝑓
)
−

𝑞𝑁+1(𝜌𝑁) = lim
𝜌𝑁→

𝐶𝑑
𝑣𝑓

𝑣𝑓𝜌𝑁 = 𝐶𝑑 

and 

lim
𝜌𝑁→(

𝐶𝑑
𝑣𝑓
)
+

𝑞𝑁+1(𝜌𝑁) = lim
𝜌𝑁→

𝐶𝑑
𝑣𝑓

(1 − 𝜖0)𝐶𝑑 = (1 − 𝜖0)𝐶𝑑. 

Therefore, in this case, in order to achieve the maximum possible flow rate 𝐶𝑑, we want to 

choose the VSL control so that there exits 𝑡0 ≥ 0 such that ∀𝑡 ≥ 𝑡0, 𝜌𝑁(𝑡) ≤
𝐶𝑑

𝑣𝑓
 and 𝜌𝑖(𝑡) 

converges to 
𝐶𝑑

𝑣𝑓
, for 𝑖 = 1,2, . . . , 𝑁. Furthermore, we want to achieve a steady state flow speed 

𝑣𝑓 in all sections. 

Similar to the single section case, the VSL controller is applied to the 𝑁-section road segment as 
shown in Figure 88. 

 

Figure 88. VSL Controlled Road Segment 
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All vehicles in the upstream segment of section 1 are asked to follow the VSL command 𝑣0 and 
all vehicles in section 𝑖 follow the VSL command 𝑣𝑖, for 𝑖 = 1,2, . . . , 𝑁 − 1. The speed limit in 
section 𝑁 is set to the constant free flow speed 𝑣𝑓. 

If the speed limit of section 𝑖 is set to be 𝑣𝑖 ≤ 𝑣𝑓, 𝑖 = 1,2, . . . , 𝑁 − 1, then the fundamental 

diagram of section 𝑖 is distorted as shown in Figure 89. 

 

Figure 89. Fundamental Diagram of Section i 

In Figure 89, 𝑠𝑖(𝜌𝑖) denotes the ability of section 𝑖 to absorb traffic flow from section 𝑖 − 1. We 

have 𝑠𝑖(𝜌𝑖) = min{
𝑣𝑖𝑤𝜌

𝑗

𝑣𝑖+𝑤
, 𝑤(𝜌𝑗 − 𝜌𝑖)}, 𝑖 = 1,2, . . . , 𝑁 − 1. 𝑑𝑖(𝜌𝑖) denotes the traffic flow 

generated by section 𝑖 to go into section 𝑖 + 1. We have 𝑑𝑖(𝜌𝑖) = min{𝑣𝑖𝜌𝑖 ,
𝑣𝑖𝑤𝜌

𝑗

𝑣𝑖+𝑤
}, 𝑖 =

1,2, . . . 𝑁 − 1. Therefore, we have 

𝑞𝑖 = min{𝑑𝑖−1(𝜌𝑖−1), 𝑠𝑖(𝜌𝑖)} = min{𝑣𝑖−1𝜌𝑖−1,
𝑣𝑖−1𝑤𝜌

𝑗

𝑣𝑖−1 + 𝑤
,
𝑣𝑖𝑤𝜌

𝑗

𝑣𝑖 + 𝑤
,𝑤(𝜌𝑗 − 𝜌𝑖)}, 𝑖 = 2, . . . , 𝑁 − 1. 

For the road segment upstream section 1, i.e., the segment with speed limit 𝑣0, whose density 
is not included in system (42), we assume the flow rate generated by this segment to be 𝑑0 =

min{𝑑,
𝑣0𝑤𝜌

𝑗

𝑣0+𝑤
}, which is independent of the density in the section with speed limit 𝑣0, therefore 

𝑞1 = min{𝑑0, 𝑠1(𝜌1)} = min{𝑑,
𝑣0𝑤𝜌

𝑗

𝑣0 + 𝑤
,
𝑣1𝑤𝜌

𝑗

𝑣1 + 𝑤
,𝑤(𝜌𝑗 − 𝜌1)}. 

The speed limit in section 𝑁 is constant 𝑣𝑓, therefore section 𝑁 can absorb a flow of 𝑠𝑁(𝜌𝑁) =

min{𝐶,𝑤(𝜌𝑗 − 𝜌𝑁)}, therefore 
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𝑞𝑁 = min{𝑑𝑁−1(𝜌𝑁−1), 𝑠𝑁(𝜌𝑁)} = min{𝑣𝑁−1𝜌𝑁−1,
𝑣𝑁−1𝑤𝜌

𝑗

𝑣𝑁−1 + 𝑤
, 𝐶,𝑤(𝜌𝑗 − 𝜌𝑁)}. 

For the sake of simplicity, we omit the term �̃�(�̃�𝑣
𝑗
− 𝜌𝑖) from 𝑑𝑖(𝜌𝑖), where �̃�𝑣

𝑗
 is �̃�𝑗  distorted 

by the VSL. As shown n Figure 89, for 𝑖 = 1, . . . , 𝑁 − 1, if the outflow 𝑞𝑖+1 = �̃�(�̃�𝑣
𝑗
− 𝜌𝑖), then 

the inflow 𝑞𝑖 ≤ 𝑠𝑖(𝜌𝑖) = 𝑤(𝜌
𝑗 − 𝜌𝑖) < 𝑞𝑖+1 will force 𝜌𝑖  to decrease until 𝑞𝑖+1 ≠ �̃�(�̃�𝑣

𝑗
− 𝜌𝑖). 

Therefore, this simplification does not affect the results. The system model with VSL control 
inputs can be formulated as follows: 

Similar to the single section system, the objective is to design a VSL controller that can 
overcome the capacity drop and achieve the control objectives in all cases. We derive the VSL 
controller using feedback linearization for the case of 𝐼 ∈ 𝛺4 then show in Theorem 1.6 that the 
controller also works for all other scenarios. 

When 𝐼 ∈ 𝛺4, i.e., 𝑑 > 𝐶𝑑, we need to decrease 𝑣0 to suppress 𝑞1 so that the flow from 
upstream can be handled by the downstream capacity 𝐶𝑑. We start by assuming that 𝑞1 =
𝑣0𝑤𝜌

𝑗

𝑣0+𝑤
, which is the only term in the equation of 𝑞1 that depends on 𝑣0 and then show that the 

VSL controller works for all values of 𝑞1. Furthermore, in this case, the desired equilibrium 

density is 𝜌𝑖
𝑒 =

𝐶𝑑

𝑣𝑓
 for 𝑖 = 1,2, . . . , 𝑁 and the equilibrium flow speed and flow rate are 𝑣𝑖

𝑒 = 𝑣𝑓 

and 𝑞𝑖+1
𝑒 = 𝑣𝑖

𝑒𝜌𝑖
𝑒 = 𝐶𝑑 respectively for 𝑖 = 1,2, . . . , 𝑁 − 1. Therefore, we initially assume that 

𝑞𝑖 = 𝑣𝑖−1𝜌𝑖−1 for 𝑖 = 2,3, . . . , 𝑁, which we relax in Theorem 1.6 below. 

Let 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑁]
𝑇 , where 𝑥𝑖 = 𝜌𝑖 −

𝐶𝑑

𝑣𝑓
, 𝑖 = 1,2, . . . , 𝑁. If 𝑥𝑁(0) ≤ 0, i.e., 𝜌𝑁(0) ≤

𝐶𝑑

𝑣𝑓
, we 

choose 𝑣 = [𝑣0, 𝑣1, . . . , 𝑣𝑁−1]
𝑇, such that 

where 𝜆𝑖 > 0, 𝑖 = 0,1, . . . , 𝑁 − 1 are design constants. Thus we have 

�̇�𝑖 = �̇�𝑖 = 𝑞𝑖 − 𝑞𝑖+1 = −𝜆𝑖−1𝑥𝑖, 𝑖 = 1,2, . . . , 𝑁, 

 �̇�𝑖 = 𝑞𝑖 − 𝑞𝑖+1, 0 ≤ 𝜌𝑖(0) ≤ 𝜌
𝑗 ,for 𝑖 = 1,2, . . . , 𝑁,

𝑞1 = min{𝑑,
𝑣0𝑤𝜌

𝑗

𝑣0 + 𝑤
,
𝑣1𝑤𝜌

𝑗

𝑣1 + 𝑤
,𝑤(𝜌𝑗 − 𝜌1)},

𝑞𝑖 = min{𝑣𝑖−1𝜌𝑖−1,
𝑣𝑖−1𝑤𝜌

𝑗

𝑣𝑖−1 + 𝑤
,
𝑣𝑖𝑤𝜌

𝑗

𝑣𝑖 + 𝑤
,𝑤(𝜌𝑗 − 𝜌𝑖)}, 𝑖 = 2,3, . . . , 𝑁 − 1,

𝑞𝑁 = min{𝑣𝑁−1𝜌𝑁−1,
𝑣𝑁−1𝑤𝜌

𝑗

𝑣𝑁−1 + 𝑤
, 𝐶,𝑤(𝜌𝑗 − 𝜌𝑁)},

𝑞𝑁+1 = min{𝑣𝑓𝜌𝑁 , (1 − 𝜖(𝜌𝑁))𝐶𝑑, �̃�(�̃�
𝑗 − 𝜌𝑁)}.

 

(51) 

 𝑞𝑖 = 𝑞𝑖+1 − 𝜆𝑖−1𝑥𝑖, 𝑖 = 1,2, . . , 𝑁, (52) 
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which implies that 𝑥𝑖(𝑡) converges to 0 exponentially fast and 𝑥𝑁(0) ≤ 0, ∀𝑡 ≥ 0. Since we 

assume that 𝑞1 =
𝑣0𝑤𝜌

𝑗

𝑣0+𝑤
 and 𝑞𝑖 = 𝑣𝑖−1𝜌𝑖−1 for 𝑖 = 2, . . . , 𝑁, solving (52) for 𝑣 gives 

If 𝑥𝑁(0) > 0, i.e., 𝜌𝑁(0) >
𝐶𝑑

𝑣𝑓
, we choose 𝑣 such that 

where 𝛿1 > 0 is a design constant. Then we have 

�̇�𝑖 = �̇�𝑖 = 𝑞𝑖 − 𝑞𝑖+1 = −𝜆𝑖−1𝑥𝑖 , 𝑖 = 1,2, . . . , 𝑁 − 1,

�̇�𝑁 = �̇�𝑁 = 𝑞𝑁 − 𝑞𝑁+1 = −𝜆𝑁−1(𝑥𝑁 + 𝛿1),
 

which implies that ∀𝑥𝑁(0) > 0, 𝑥𝑁(𝑡) will decrease exponentially toward −𝛿1 < 0. Therefore 

there exists 𝑡0 > 0, such that 𝑥𝑁(𝑡0) = −𝛿2, i.e., 𝜌𝑁(𝑡0) =
𝐶𝑑

𝑣𝑓
− 𝛿2, where 0 < 𝛿2 <

min{𝛿1,
𝐶𝑑

𝑣𝑓
}, which is in the region of (52)-(53). At 𝑡 = 𝑡0, we have 𝑥𝑁(0) < 0 and the controller 

(53) is switched on, in which case 𝑥(𝑡) converges to 0 exponentially fast as shown above. 
Solving (54) for 𝑣, we have 

Using the above VSL controller and assuming that the speed is not allowed to go below zero or 
exceed the speed limit 𝑣𝑓, the following equations summarize the VSL controller for the 𝑁-

section road system under the assumption that 𝑞1 =
𝑣0𝑤𝜌

𝑗

𝑣0+𝑤
 and 𝑞𝑖 = 𝑣𝑖−1𝜌𝑖−1, 𝑖 = 2,3, . . . , 𝑁, 

 
𝑣0 =

(𝑞2 − 𝜆0𝑥1)𝑤

𝑤𝜌𝑗 − 𝑞2 + 𝜆0𝑥1
,

𝑣𝑖 =
𝑞𝑖+2 − 𝜆𝑖𝑥𝑖+1

𝜌𝑖
, 𝑖 = 1,2, . . . , 𝑁 − 1.

 

(53) 

 𝑞𝑖 = 𝑞𝑖+1 − 𝜆𝑖−1𝑥𝑖, 𝑖 = 1,2, . . , 𝑁 − 1,

𝑞𝑁 = 𝑞𝑁+1 − 𝜆𝑁−1(𝑥𝑁 + 𝛿1),
 

(54) 

 
𝑣0 =

(𝑞2 − 𝜆0𝑥1)𝑤

𝑤𝜌𝑗 − 𝑞2 + 𝜆0𝑥1
,

𝑣𝑖 =
𝑞𝑖+2 − 𝜆𝑖𝑥𝑖+1

𝜌𝑖
, 𝑖 = 1,2, . . . , 𝑁 − 2,

𝑣𝑁−1 =
𝑞𝑁+1 − 𝜆𝑁−1(𝑥𝑁 + 𝛿1)

𝜌𝑁−1
.

 

(55) 
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which we will relax subsequently. For all 𝐼 ∈ ⋃ 𝛺𝑖
4
𝑖=1 , the VSL commands are generated as 

follows: 

where 𝛿1 > 0,0 < 𝛿2 < min{𝛿1,
𝐶𝑑

𝑣𝑓
}, 𝜆𝑖 > 𝑣𝑓, for 𝑖 = 1,2. . . , 𝑁 − 1, 0 < 𝜆0 <

𝑣𝑓𝑤𝜌
𝑗

𝐶𝑑
. In 

controller (56), 𝜆0 <
𝑣𝑓𝑤𝜌

𝑗

𝐶𝑑
 guarantees that the denominator of 𝑣0 is always greater than 0. 

𝜆𝑖 > 𝑣𝑓, for 𝑖 = 1,2. . . , 𝑁 − 1 guarantees the exponential convergence of the density states, 

which we will show in the proof of Theorem 1.6 below. The switching logic of 𝑣𝑁−1 is similar to 
that of 𝑣 shown in Figure 87 for the single section case. For 𝐼 ∈ 𝛺5, the VSL command is 

Similar to the single section case, we can show that 𝑣0 is well-defined as its denominator is 
always greater than 0. For 𝑖 = 1,2, . . . , 𝑁 − 1, 𝑣𝑖  is also well-defined by setting 𝑣𝑖 = 𝑣𝑓 when its 

denominator is equal to 0. 

Theorem 1.6. We consider the traffic flow model described by (51) with the VSL controller (56): 

a) Let 𝐼 ∈ ⋃ 𝛺𝑖
4
𝑖=1 , i.e., 𝐶𝑑 < 𝐶. The closed-loop system has a unique equilibrium state 𝜌𝑒 =

min{𝑑,𝐶𝑑}

𝑣𝑓
× 𝟏. In addition, ∀𝜌(0) ∈ {𝜌|0 ≤ 𝜌𝑁 ≤

𝐶𝑑

𝑣𝑓
}, the density vector 𝜌(𝑡) converges to 

𝜌𝑒 exponentially fast and ∀𝜌(0) ∈ {𝜌|
𝐶𝑑

𝑣𝑓
} < 𝜌𝑁 ≤ 𝜌

𝑗, 𝜌𝑁(𝑡) decreases to 
𝐶𝑑

𝑣𝑓
− 𝛿2 

exponentially fast, which brings it to the region where the density vector 𝜌(𝑡) converges 
to 𝜌𝑒 exponentially fast. Furthermore, the flow rates 𝑞𝑖 , 𝑖 = 1,2, . . . , 𝑁 + 1 and flow 

 
𝑣‾0 =

(𝑞2 − 𝜆0𝑥1)𝑤

𝑤𝜌𝑗 − 𝑞2 + 𝜆0𝑥1
,

𝑣‾𝑖 = {

𝑞𝑖+2 − 𝜆𝑖𝑥𝑖+1
𝜌𝑖

𝜌𝑖 > 0

𝑣𝑓 𝜌𝑖 = 0

, 𝑖 = 1,2, . . . , 𝑁 − 2,

𝑣‾𝑁−1,1 =
𝑞𝑁+1 − 𝜆𝑁−1(𝑥𝑁 + 𝛿1)

𝜌𝑁−1
,

𝑣‾𝑁−1,2 = {

𝑞𝑁+1 − 𝜆𝑁−1𝑥𝑁
𝜌𝑁−1

𝜌𝑁−1 > 0

𝑣𝑓 𝜌𝑁−1 = 0

,

𝑣‾𝑁−1 =

{
  
 

  
 𝑣‾𝑁−1,1 if 𝜌𝑁(0) >

𝐶𝑑
𝑣𝑓

 and 𝜌𝑁(𝑡) >
𝐶𝑑
𝑣𝑓
− 𝛿2

𝑣‾𝑁−1,2 if 𝜌𝑁(0) >
𝐶𝑑
𝑣𝑓

 and 𝜌𝑁(𝑡) =
𝐶𝑑
𝑣𝑓
− 𝛿2

𝑣‾𝑁−1,2 if 𝜌𝑁(0) ≤
𝐶𝑑
𝑣𝑓

 and 𝜌𝑁(𝑡) ≤
𝐶𝑑
𝑣𝑓

,

𝑣𝑖 = med{0, 𝑣‾𝑖, 𝑣𝑓}, 𝑖 = 0,1, . . . , 𝑁 − 1,

 

(56) 

 𝑣𝑖 = 𝑣𝑓 , 𝑖 = 0,1, . . . , 𝑁 − 1. (57) 
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speeds 𝑣𝑖 , 𝑖 = 0,1, . . . , 𝑁 − 1 converge to min{𝑑, 𝐶𝑑} and 𝑣𝑓 respectively which is the state 

which corresponds to the maximum possible flow. 

b) Let 𝐼 ∈ 𝛺5, i.e., 𝐶𝑑 ≥ 𝐶. The closed-loop system has a unique equilibrium state 𝜌𝑒 =
min{𝑑,𝐶}

𝑣𝑓
× 𝟏. In addition, ∀𝜌(0) ∈ 𝑆, the density vector 𝜌 converges exponentially fast to 

𝜌𝑒. Furthermore, the flow rates and flow speeds converge exponentially fast to min{𝑑, 𝐶} 
and 𝑣𝑓 respectively, achieving the maximum possible flow at steady state. 

The proof of Theorem 1.6 is presented in Appendix F. Theorem 1.6 shows that the VSL 

controller guarantees that for all cases 𝐼 ∈ ⋃ 𝛺𝑖
5
𝑖=1 , the steady state densities, flow rates and 

speeds of flow are stabilized at the desired values which correspond to the maximum flow rate 
through the road segment while achieving homogeneous density distribution. 

We should note that in Theorem 1.6, the design of the VSL controller and the stability analysis 
of the closed-loop system are performed under the assumption that we have perfect 
knowledge of system parameters and accurate measurement of the density vector 𝜌. However 
when 𝐼 ∈ 𝛺4, since the desired equilibrium point of the closed-loop system (51), i.e., 𝜌𝑒 =
𝐶𝑑

𝑣𝑓
× 𝟏 lies exactly on the discontinuity plane of the fundamental diagram, which is {𝜌|𝜌𝑁 =

𝐶𝑑

𝑣𝑓
}, 

when 𝜌(𝑡) =
𝐶𝑑

𝑣𝑓
× 𝟏 at steady state, any disturbance in model parameters or measurement 

noise may push the density in section 𝑁 to 𝜌𝑁 >
𝐶𝑑

𝑣𝑓
, which may lead to temporary capacity drop 

which the controller tries to correct leading to a possible oscillation around the desired 
equilibrium point. Even though such oscillations may not have any significant impact in an 
actual traffic situation, the proposed controller can be easily modified to avoid such oscillatory 

response. This is achieved by setting the desired equilibrium point to be 𝜌𝑒 = (
𝐶𝑑

𝑣𝑓
− 𝜎) × 𝟏, 

where 𝜎 > 0, in order to provide a margin between 𝜌𝑒 and the discontinuity at 𝜌𝑁 =
𝐶𝑑

𝑣𝑓
. Thus 

in (56), 𝑥𝑖 = 𝜌𝑖 − (
𝐶𝑑

𝑣𝑓
− 𝜎). With sufficiently large feedback gains 𝜆0, . . . , 𝜆𝑁, the controller is 

able to stabilize the density state 𝜌 at a point that is arbitrarily close to 𝜌𝑒 = (
𝐶𝑑

𝑣𝑓
− 𝜎) × 𝟏, 

therefore avoid the capacity drop. We will demonstrate this with numerical simulations in 
Numerical Experiments. Thus, although the controller (56) is designed for accurate system 
model, it can be robust with respect to system disturbance with simple modification. How to 
modify the controller of this paper to be robust with respect to a wide range of uncertainties is 
currently under investigation and it is outside the scope of this paper. However the ideal 
properties of the controller of this paper form the basis for comparison of any other controller 
under less ideal situations and for this reason it has its own merit. 

Numerical Experiments 

In this section, we use numerical simulations to demonstrate the analytical results of the 
previous sections, for both open-loop and closed-loop systems. The simulations are performed 

on a two-section road network, whose parameters are: 𝐶 = 6500 veh/h,  𝑤 = 20 mi/h,  𝜌𝑗 =
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425 veh/mi,  𝑣𝑓 = 65 mi/h,  �̃� = 10 mi/h, �̃�𝑗 = 750 veh/mi, 𝜌𝑐 = 100 veh/mi. When 𝐼 belongs 

to 𝛺1 to 𝛺4, we set the downstream capacity 𝐶𝑑 = 5200 veh/h, which is less than 𝐶, and 𝜖0 =
0.15. When 𝐼 belongs to 𝛺5, we set 𝐶𝑑 = 7000 veh/h, which is greater than 𝐶. The upstream 
demand 𝑑 is set to be 4000 veh/h, 4420 veh/h, 5000 veh/h, 6000 veh/h and 6000 veh/h for the 
cases of 𝐼 in 𝛺1 to 𝛺5 respectively. We apply controller (56),(57) to the two-section system with 
the following design constants: 𝜆1 = 𝜆2 = 70 mi/h,  𝛿1 = 20 veh/mi, 𝛿2 = 5 veh/mi. Among 
the abbreviated units we used above, “veh” stands for number of vehicles, “mi” stands for 
miles and “h” stands for hours. 

Figure 90-Figure 94 show the phase portraits of the two-section open-loop and closed-loop 
systems when 𝐼 belongs to 𝛺1 to 𝛺5. When 𝐼 ∈ 𝛺1, all the density state trajectories of the 
open-loop system, shown in Figure 90 (a) converge to the unique equilibrium state 𝜌𝑒 =

(
𝑑

𝑣𝑓
,
𝑑

𝑣𝑓
) = (61.5,61.5), indicated by the red dot. In Figure 90 (b), all density state trajectories of 

the closed-loop system converge to the same equilibrium state as in the open-loop case as 
expected from the analysis. When 𝐼 ∈ 𝛺2, all density state trajectories of the open-loop system 

shown in Figure 91 (a) converge to the isolated equilibrium state 𝜌𝑒 = (
𝑑

𝑣𝑓
,
𝑑

𝑣𝑓
) = (68,68), 

indicated by the red dot, or to the equilibrium set 

𝑆𝑒 = {𝜌 |𝜌1 =
𝑑

𝑣𝑓
,
𝐶𝑑
𝑣𝑓
< 𝜌2 ≤ 𝜌

𝑗 −
𝑑

𝑤
} ∪ {𝜌|

𝑑

𝑣𝑓
≤ 𝜌1 ≤ 𝜌

𝑗 −
𝑑

𝑤
, 𝜌2 = 𝜌

𝑗 −
𝑑

𝑤
}

= {𝜌|𝜌1 = 68,80 < 𝜌2 ≤ 204} ∪ {𝜌|68 ≤ 𝜌1 ≤ 204, 𝜌2 = 204},

 

indicated by the red line. When the VSL control is applied, all the density state trajectories of 

the closed-loop system converge to the unique equilibrium state 𝜌𝑒 = (
𝑑

𝑣𝑓
,
𝑑

𝑣𝑓
) = (68,68), as 

shown in Figure 91 (b). When 𝐼 ∈ 𝛺3, each density state trajectory of the open-loop system 
shown in Figure 92 (a) converges to one of the two isolated equilibrium states, 𝜌1

𝑒 =

(𝑑/𝑣𝑓 , 𝑑/𝑣𝑓) = (77,77) and 𝜌2
𝑒 = (𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
) = (204,204), indicated by 

the red dot and red star respectively. All closed-loop state trajectories shown in Figure 92 (b) 

converge to the unique equilibrium state 𝜌1
𝑒 = (𝑑/𝑣𝑓 , 𝑑/𝑣𝑓) = (77,77). Figure 93 (a) shows 

that when 𝐼 ∈ 𝛺4, all the density state trajectories converge to the unique equilibrium state 

𝜌𝑒 = (𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
) = (204,204), indicated by the red dot. The phase portrait 

of the corresponding closed-loop system is plotted in Figure 93 (b). As shown in Theorem 1.6, 

all density state trajectories converge to the desired equilibrium state 𝜌𝑒 = (𝐶𝑑/𝑣𝑓 , 𝐶𝑑/𝑣𝑓) =
(80,80), indicated by the red dot in Figure 93 (b). Furthermore, 𝜌2 converges to 𝜌2 = 80 when 
the initial condition satisfies 𝜌2(0) ≤ 80. If 𝜌2(0) > 80, 𝜌2(𝑡) decreases to 𝜌2 = 75 first, then 
increases and converges to 80, which guarantees the steady-state flow rate 𝐶𝑑 = 5200 veh/h. 
When 𝐼 ∈ 𝛺5, capacity drop will not occur since the downstream capacity is higher than the 
capacity of the road sections. All state trajectories in Figure 94 converge to the unique 

equilibrium state 𝜌𝑒 = (min{𝑑, 𝐶}/𝑣𝑓 , min{𝑑, 𝐶}/𝑣𝑓) = (92.3,92.3). The open-loop and 

closed-loop behavior when 𝐼 ∈ 𝛺5 are the same as expected. 
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Figure 90. Phase portrait when 𝑰 ∈ 𝛀𝟏(𝑪𝒅 < 𝑪, 𝒅 < (𝟏 − 𝝐𝟎)𝑪𝒅). Both the open-loop and 
closed-loop densities converge to the same low density equilibrium state.  Single low density 
equilibrium state. 

 

Figure 91. Phase portrait when 𝑰 ∈ 𝛀𝟐(𝑪𝒅 < 𝑪, 𝒅 = (𝟏 − 𝝐𝟎)𝑪𝒅). The open-loop system has 
an infinite number of equilibrium density states which do not correspond to the maximum 
possible flow speed. Closed-loop system has a single low density equilibrium state.  
Equilibrium state;  Equilibrium manifold. 



 140 

 

Figure 92. Phase portrait when 𝑰 ∈ 𝛀𝟑(𝑪𝒅 < 𝑪, (𝟏 − 𝝐𝟎)𝑪𝒅 < 𝒅 ≤ 𝑪𝒅). The open-loop system 
has two equilibrium density states one in the low density and the other in the high density 
region. The closed-loop system has a unique equilibrium state at low density.  Low density 
equilibrium state;  High density equilibrium state. 

 

Figure 93. Phase portrait when I ∈ Ω4(Cd < C,d > Cd). The open-loop system has a 
uniqueequilibrium state in the high density region. The closed-loop system has a unique 
equilibrium state at low density.  Low density equilibrium state;  High density equilibrium 
state. 
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Figure 94. Phase portrait when I ∈ Ω5(Cd ≥ C). Same open-loop and closed-loop response.  
Single low density equilibrium state. 

Figure 95 shows the flow rate time responses of the open-loop and closed-loop systems when 
𝐼 ∈ 𝛺4 with initial condition 𝜌 = (110,110). From Figure 95 (a), we can see that at 𝑡 = 0, 
𝑞1(0) = 𝑑 = 6000 veh/h, 𝑞2(0) = 𝑣𝑓𝜌1(0) = 6500 veh/h < 𝑞1(0) and decrease to the steady 

state value of 4420 veh/h. On the other hand, 𝑞3 = (1 − 𝜖0)𝐶𝑑 = 4420 veh/h remains 
constant during the entire simulation time (30 min). In Figure 95 (b), 𝑞3 = (1 − 𝜖0)𝐶𝑑 = 4420 
veh/h at the beginning of the simulation, then jumps to 5200 veh/h, then oscillates a little and 
converges to 𝐶𝑑 = 5200 veh/h. The jump in the value of 𝑞3 is due to the fact that 𝜌2 decreases 

and crosses the value 
𝐶𝑑

𝑣𝑓
, at which 𝑞3 jumps from (1 − 𝜖0)𝐶𝑑 to 𝐶𝑑. The values of 𝑞1 and 𝑞2 also 

have a jump between 𝑡 = 1 min and 𝑡 = 2 min. This jump is caused by the switching of the VSL 
control which at this time does not affect 𝑞3 since 𝑞3 is only a function of 𝜌2, and does not jump 
when the VSL switches.  

 

Figure 95. Flow rate when I ∈ Ω4 
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Figure 96 shows the performance of the closed-loop system in the same scenario as in Figure 
95, however with perturbed 𝑣𝑓. In this case, the actual free flow speed 𝑣𝑓 = 0.9𝑣𝑓𝑛, where 𝑣𝑓𝑛 

is the nominal value of 𝑣𝑓, based on which the controller (56) is designed. That is, the VSL 

controller is over-estimating the flow rate at the bottleneck, therefore sends more flow to 
section 2 than it can handle, which leads to temporary capacity drop, which the controller 
corrects creating an oscillation around an average that corresponds to the desired flow as 
shown in Figure 96 (a). Our controller however can be easily modified to take care of the 
uncertainty without changing the fundamentals of the design and analysis. As shown in Figure 

96 (b), we modified the controller (56) as stated earlier by setting 𝑥𝑖 = 𝜌𝑖 − (
𝐶𝑑

𝑣𝑓𝑛
− 5) = 𝜌𝑖 −

75, 𝑖 = 1,2 and increasing the feedback gains to be 𝜆𝑖 = 100 mi/h, 𝑖 = 0,1. The modified 
controller tries to stabilize the density vector at 𝜌𝑒 = (75,75), which gives a margin between 
𝜌𝑒 and the boundary of capacity drop. The increased feedback gains are able to suppress the 
steady state error to make sure that the steady state value of 𝜌 is close to 𝜌𝑒 thus capacity drop 
does not occur. With the modified VSL controller, the steady state density is 𝜌 = (74.2,78.44), 
and the steady state traffic flow is 𝑞1 = 𝑞2 = 𝑞3 = 4590 veh/h. This a simple case how an 
uncertainty can be dealt with by the proposed controller. The robustness of the proposed 
controller with respect to a wide range of uncertainties is currently under investigation and it is 
outside the scope of this paper that focuses on the control design and analysis under ideal 
conditions. The results form the basis for comparison as uncertainties are included in the 
model. 

 

Figure 96. Flow rate with Perturbed vf when I ∈ Ω4 
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Robust VSL Control of Cell Transmission Model with Disturbance 

Section based on the publication: 

F. Alasiri, Y. Zhang, and P.A. Ioannou, "Robust variable speed limit control with respect to 
uncertainties," European Journal of Control 59 (2021): 216-226. 

Introduction 

VSL Control: Single Section shows the possibility of achieving the maximum possible flow rate at 
a bottleneck and avoiding capacity drop, under the assumption that we have perfect knowledge 
of model parameters of the CTM and accurate measurement of the vehicle densities. We have 
shown as well in VSL Control: Single Section that due to the discontinuous nature of the desired 
equilibrium point, any disturbance or measurement noise may lead to an oscillatory behavior of 
the closed-loop system. We also demonstrate with numerical simulations that with simple 
modification, the VSL controller can help the system avoid the oscillation and stabilize the 
density at an equilibrium point close to the desired one. In this section, we modify the VSL 
controller by adding the integral action in order to reject the constant disturbance, which may 
be introduced by the parametric modeling and measurement errors. 

The Cell Transmission Model with Disturbance 

Consider a single road section of unit length under the assumption that vehicle density 𝜌 is 
uniform along the section. The road section is expected to meet a demand of flow 𝑑. Let �̃�1 and 
�̃�2 represent the true value of the inflow and outflow, respectively. Then, according to the 
conservation law of traffic flow, we have �̇� = �̃�1 − �̃�2. In practice, however, we can only 
measure the corrupted values of �̃�1 and �̃�2 due to the inevitable parametric modeling errors 
and imperfect measurements of the true flows. Let 𝑞1 and 𝑞2 denote the measured inflow and 
outflow, respectively, and let 𝜇 account for the uncertainties in the model related to modeling 
and measurement errors. Then, the evolution of the traffic density 𝜌 with respect to time of the 
considered road section, shown in Figure 85, is given by the following differential equation: 

Where 

 �̇� = 𝑞1 − 𝑞2 + 𝜇, 0 ≤ 𝜌(0) ≤ 𝜌
𝑗  (58) 

 𝑞1 = min{𝑑, 𝐶, 𝑤(𝜌𝑗 − 𝜌)},

𝑞2 = {
min{𝑣𝑓𝜌, �̃�(�̃�

𝑗 − 𝜌), (1 − 𝜖(𝜌))𝐶𝑑}, if 𝐶𝑑 < 𝐶

min{𝑣𝑓𝜌, �̃�(�̃�
𝑗 − 𝜌), 𝐶𝑑}, otherwise

,

𝑣𝑓𝜌𝑐 = 𝑤(𝜌𝑗 − 𝜌𝑐) = �̃�(�̃�
𝑗 − 𝜌𝑐) = 𝐶,

0 < 𝜌𝑐 < 𝜌
𝑗 , 0 < �̃� < 𝑤, 𝑣𝑓 > 0,

𝜖(𝜌) = {
0 if 0 ≤ 𝜌 ≤

𝐶𝑑
𝑣𝑓

𝜖0 otherwise

,

 

(59) 
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and the parameters in equation (59) follow the same definition as in VSL Control: Single 
Section. In model (58)- (59) the parameter 𝜇 is an unknown disturbance that accounts for all 
uncertainties in the model, and 𝑞1, 𝑞2 are the measured flows. We assume that 𝜇 is bounded by 
a constant 𝜇𝑚 and satisfies |𝜇| ≤ 𝜇𝑚 ≪ 𝐶𝑑. In other words, compared to the bottleneck 
capacity, the magnitude of the disturbance 𝜇 is small, which also guarantees that 0 ≤ 𝜌(𝑡) ≤

𝜌𝑗 , ∀𝑡 ≥ 0. We also assume that 𝜇 is approximately constant for large intervals of time. 
In the following subsection, the equilibrium points of the open-loop system described by (58)- 
(59) are identified and their stability properties are analyzed. 

The Stability Analysis of the Open-Loop CTM with Disturbance 

In order to analyze the stability properties of the dynamical model presented in (58)- (59), all 
possible operating scenarios are investigated. These scenarios are defined by the capacity of 
the road section 𝐶, the capacity of the downstream section 𝐶𝑑, the capacity drop factor 𝜖0 
(which may depend on microscopic results (Kontorinaki et al. 2016; Srivastava and Geroliminis 
2013; Y. Zhang and Ioannou 2017b)), and the level of both demand 𝑑 and disturbance 𝜇. The 
following theorem presents the results of the analysis. 

Theorem 1.7. Consider the open loop system (58)- (59), where the disturbance term 𝜇 is 
assumed to be constant but otherwise unknown. We have the following results: 

1. If (𝑑 + 𝜇) < (1 − 𝜖0)𝐶𝑑 and 𝐶 > 𝐶𝑑, then 𝜌(𝑡) converges exponentially fast to 
𝑑+𝜇

𝑣𝑓
, 

∀𝜌(0) ∈ [0, 𝜌𝑗]. 

2. If (𝑑 + 𝜇) = (1 − 𝜖0)𝐶𝑑 and 𝐶 > 𝐶𝑑, then 

– 𝜌(𝑡) converges exponentially fast to 
𝑑+𝜇

𝑣𝑓
=
(1−𝜖0)𝐶𝑑

𝑣𝑓
, ∀𝜌(0) ∈ [0,

𝐶𝑑

𝑣𝑓
]. 

– 𝜌(𝑡) = 𝜌(0), ∀𝜌(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗 −

𝑑+𝜇

𝑤
]. 

– 𝜌(𝑡) converges exponentially fast to 𝜌𝑗 −
𝑑+𝜇

𝑤
= 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, ∀𝜌(0) ∈ (𝜌𝑗 −

𝑑+𝜇

𝑤
, 𝜌𝑗]. 

3. If (1 − 𝜖0)𝐶𝑑 < (𝑑 + 𝜇) ≤ 𝐶𝑑 and 𝐶 > 𝐶𝑑, then 

– 𝜌(𝑡) converges exponentially fast to 
𝑑+𝜇

𝑣𝑓
, ∀𝜌(0) ∈ [0,

𝐶𝑑

𝑣𝑓
]. 

– 𝜌(𝑡) converges exponentially fast to 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, ∀𝜌(0) ∈ (

𝐶𝑑

𝑣𝑓
, 𝜌𝑗]. 

4. If (𝑑 + 𝜇) > 𝐶𝑑 and 𝐶 > 𝐶𝑑, then 𝜌(𝑡) converges exponentially fast to 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, 

∀𝜌(0) ∈ [0, 𝜌𝑗]. 

5. If (𝑑 + 𝜇) < 𝐶 and 𝐶 ≤ 𝐶𝑑, then 𝜌(𝑡) converges exponentially fast to 
𝑑+𝜇

𝑣𝑓
, ∀𝜌(0) ∈

[0, 𝜌𝑗]. 
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6. If (𝑑 + 𝜇) ≥ 𝐶 and 𝐶 ≤ 𝐶𝑑, then 𝜌(𝑡) converges exponentially fast to 
𝐶

𝑣𝑓
, ∀𝜌(0) ∈ [0, 𝜌𝑗]. 

Proof. Under the assumption that (𝑑 + 𝜇) ≥ 0, the proof follows from that of Theorem 1.3 in 
VSL Control: Single Section for all six cases by replacing 𝑑 with (𝑑 + 𝜇). 

Theorem 1.7 shows that the equilibrium density states of the open-loop system are directly 
affected by the external disturbance. In fact, the disturbance term has a direct effect on the 
actual demand and could shift the equilibrium of the flow from the uncongested region to the 
congested one or trigger a capacity drop much earlier. Depending on the initial condition of the 
density, the system would reach a state of equilibrium when (𝑞1 + 𝜇) = 𝑞2. While some cases 
have more than one isolated equilibrium point associated with high density, in case 2, when 
(𝑑 + 𝜇) = (1 − 𝜖0)𝐶𝑑 and 𝐶 > 𝐶𝑑, there is an infinite number of equilibrium points. The aim is 
to design a controller such that the traffic flow of the road section operates within the free flow 
region in the fundamental diagram despite the presence of the disturbance term 𝜇. The control 
input is variable speed limit commands to vehicles upstream in order to protect the section 
under consideration and maximize the throughput under different demands, initial density 
conditions, and constant disturbances. 

Robust VSL Control of the CTM with Disturbance 

The purpose of this section is to design a variable speed limit (VSL) controller that rejects the 
constant disturbance 𝜇, guarantees convergence to a desired density located in the free-flow 
region in the fundamental diagram, and improves the throughput of an active bottleneck. The 
basic idea of the VSL control is to reduce the incoming flow by informing the upstream vehicles 
to follow a speed limit so that the density and flow rate of the road section converge to the 
desired possible values, which correspond to the maximum possible throughput at the 
bottleneck. The control problem would have been trivial if one could directly control the inflow 
𝑞1 via traffic light control. Since such an approach is not feasible in most traffic situations, 
controlling the inflow via the upstream speed is the only feasible choice. The nonlinear 
relationship between the inflow and upstream speed makes the design and analysis of VSL 
control more challenging. As shown in Figure 86, the VSL action 𝑣 is applied to the upstream 
road section called the "VSL zone". All vehicles in the VSL zone are asked to follow the speed 
limit 𝑣 and then follow the free flow speed 𝑣𝑓 within the road section under consideration. 

If the VSL command 𝑣 is less than the free flow speed 𝑣𝑓, then the fundamental diagram of the 

VSL zone is distorted, as shown in Figure 86, assuming that the VSL zone has similar 
characteristics as the road section (Csikós and Kulcsár 2017; Hadiuzzaman and Qiu 2013; H.-Y. 
Jin and Jin 2015). From the geometry of the fundamental diagram, it follows that the 

parameters 𝜌𝑗 , 𝑤, and �̃� remain unchanged, while the maximum possible flow rate the VSL 

zone could send to the considered road section is given by the term 
𝑣𝑤𝜌𝑗

𝑣+𝑤
. The use of VSL control 

will affect the inflow 𝑞1, which in addition to upstream demand 𝑑 will also depend on how 
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much flow is allowed by the VSL. Therefore, the model (58)- (59) with VSL control inputs is 
given by: 

Where 

In equation (61), the term that could be influenced by the VSL is 
𝑣𝑤𝜌𝑗

𝑣+𝑤
 since it is the only term 

that depends on the control action, namely the upstream speed of flow 𝑣. Let 𝑞1𝑣 =
𝑣𝑤𝜌𝑗

𝑣+𝑤
, and, 

without loss of generality, assume 𝑑 < 𝐶. Then, system (58)- (59) can be rewritten as follows: 

Where 

and the parameters in equation (63) follow the same definition as in (61). The median function 
is used to guarantee that when mapping the controlled flow rate 𝑞1𝑣 into the VSL command, 

i.e., 𝑣 =
𝑤𝑞1𝑣

𝑤𝜌𝑗−𝑞1𝑣
, the speed does not become less than zero or exceed the free flow speed limit. 

𝑞‾1𝑣 is the unconstrained control variable to be designed. 

The following constants 0 < 𝜌𝐿 ≤ 𝜌⋆ < 𝜌𝑈 <
𝐶𝑑

𝑣𝑓
, shown in Figure 97, are defined to help design 

the controller, where 𝜌⋆ is the desired value to which we want the traffic density of the road 
section to converge. 𝜌𝐿 and 𝜌𝑈 denote the lower and upper bounds, respectively, of 𝜌⋆. 

 �̇� = 𝑞1 − 𝑞2 + 𝜇, 0 ≤ 𝜌(0) ≤ 𝜌
𝑗 , (60) 

 
𝑞1 = min{𝑑,

𝑣𝑤𝜌𝑗

𝑣 + 𝑤
, 𝐶,𝑤(𝜌𝑗 − 𝜌)},

𝑞2 = min{𝑣𝑓𝜌, �̃�(�̃�
𝑗 − 𝜌), (1 − 𝜖(𝜌))𝐶𝑑},

𝑣𝑓𝜌𝑐 = 𝑤(𝜌𝑗 − 𝜌𝑐) = �̃�(�̃�
𝑗 − 𝜌𝑐) = 𝐶,

0 < 𝜌𝑐 < 𝜌
𝑗 , 0 < �̃� < 𝑤, 𝑣𝑓 > 0,

𝜖(𝜌) = {
0 if 0 ≤ 𝜌 ≤

𝐶𝑑
𝑣𝑓

𝜖0 otherwise

,

 

(61) 

 �̇� = 𝑞1 − 𝑞2 + 𝜇, 0 ≤ 𝜌(0) ≤ 𝜌
𝑗 , (62) 

 𝑞1 = min{𝑑, 𝑞1𝑣, 𝑤(𝜌
𝑗 − 𝜌)},

𝑞2 = min{𝑣𝑓𝜌, �̃�(�̃�
𝑗 − 𝜌), (1 − 𝜖(𝜌))𝐶𝑑},

𝑞1𝑣 = median{0, 𝑞‾1𝑣, 𝐶},

 

(63) 
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Figure 97. Design Constants 

Selecting the value of 𝜌⋆ is critical for designing the controller. 𝜌⋆ needs to be chosen so that 
the bottleneck congestion is reduced or prevented and the discharging flow rate is improved as 
compared to the case without applying a control action. Intuitively, 𝜌⋆ should be in the 
uncongested region of the fundamental diagram to take advantage of the free-flow speed in 

that region. A trivial choice is to make 𝜌⋆ =
𝐶𝑑

𝑣𝑓
. This choice corresponds to the highest 

discharging flow in this case. However, small disturbances or faulty measurements may push 
the density towards the capacity-drop region, resulting in an oscillatory behavior of the closed-
loop system, as shown in (Y. Zhang and Ioannou 2018). The values of 𝜌⋆ and 𝜌𝑈  should be 
chosen so that we do not lose excessive potential capacity. Therefore, 𝜌⋆ and 𝜌𝑈 can be 

arbitrarily close to the value 
𝐶𝑑

𝑣𝑓
 as long as the inequality 0 < 𝜌𝐿 ≤ 𝜌⋆ < 𝜌𝑈 <

𝐶𝑑

𝑣𝑓
 holds, as will 

be shown later in Theorem 1.8. 𝜌𝐿 and 𝜌𝑈 are introduced to prevent unwanted rapid switching 
when applying the controller. 

When the traffic of the road section is congested due to the activation of the bottleneck, we 
choose 𝑣 so that we decrease the inflow 𝑞1 in order to bring 𝜌 to the uncongested region in the 
fundamental diagram by letting 

where 𝑞𝑠 is a small constant flow such that 𝑞𝑠 < min{𝑣𝑓𝜌
𝐿 , (1 − 𝜖0)𝐶𝑑, �̃�(�̃�

𝑗 − 𝜌𝑗)}, which 

guarantees that ∀𝜌 ≥ 𝜌𝐿, 𝑞𝑠 < 𝑞2, implying that �̇� < 0. A trivial selection is 𝑞𝑠 = 0. 
Theoretically, this selection is valid. However, the implication of such a choice leads to 
sacrificing the potential road capacity. Therefore, the constant flow 𝑞𝑠 should be selected in a 
way that we do not significantly lose some of the potential capacity. Thus, 𝑞𝑠 can be arbitrarily 

close to the value min{𝑣𝑓𝜌
𝐿 , (1 − 𝜖0)𝐶𝑑, �̃�(�̃�

𝑗 − 𝜌𝑗)} as long as the inequality 𝑞𝑠 <

min{𝑣𝑓𝜌
𝐿 , (1 − 𝜖0)𝐶𝑑, �̃�(�̃�

𝑗 − 𝜌𝑗)} is satisfied. Since the outflow is greater than the inflow in 

 𝑞‾1𝑣 = 𝑞𝑠 (64) 
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this case, the traffic density of the road section is decreasing. Thus, there exists a finite time 
instant 𝑡0 > 0 at which 𝜌(𝑡0) = 𝜌

𝐿, and we choose 𝑣 such that 

is the integral gain used to determine how fast the steady-state error is eliminated, 𝜆1 > max 

{2√𝜆2, 𝑣𝑓 +
𝜆2

𝑣𝑓
} > 0 is the proportional gain used to determine how fast the control system 

responds, and 𝑐 is a design constant to be selected in order to guarantee that 𝜌 asymptotically 
converges to 𝜌⋆, as we will show later. Equation (65) is a proportional–integral (PI) controller, 
which rejects the disturbance 𝜇 and stabilizes the density at 𝜌 = 𝜌⋆. The integral action enables 
the PI controller to eliminate the offset with respect to 𝜌⋆ introduced by the disturbance 𝜇. If 
the integral part is removed from equation (65), the steady-state error with respect to 𝜌⋆ may 
result in capacity drop, as shown in (Y. Zhang and Ioannou 2018). We can increase the value of 
𝜆1 to suppress the steady-state error in this case. However, the controlled flow rate 𝑞1𝑣 is 
constrained by the saturation of the VSL as well as the road capacity. Therefore, the 
proportional plus integral control is essential for stability. It rejects the effect of the 
disturbances and drives the density to the desired point. 

If 𝜌 decreases to the uncongested region 𝜌 ≤
𝐶𝑑

𝑣𝑓
, we do not want the disturbance to push back 

the density to the capacity drop region. Therefore, if 𝜌 increases and reaches 𝜌𝑈, we switch 
back to (64). In order to avoid undesirable stability phenomena and oscillations as a result of 
frequent switching, we introduce a hysteresis to make the switching continuous. Therefore, the 
unconstrained control flow 𝑞‾1𝑣 with hysteresis characteristics is described as follows 

where 

𝑘1(𝑡) = 𝑞𝑠,

𝑘2(𝑡) = 𝑞2 − 𝜆1(𝜌 − 𝜌
⋆) − 𝜆2 (∫ (𝜌 − 𝜌⋆)

𝑡

𝑡0

𝑑𝜏 − 𝑐) , 𝑡 ≥ 𝑡0.
 

Mapping the flow rate into the VSL command 𝑣, we have 

 
𝑞‾1𝑣 = 𝑞2 − 𝜆1(𝜌 − 𝜌

⋆) − 𝜆2 (∫ (𝜌 − 𝜌⋆)
𝑡

𝑡0

𝑑𝜏 + 𝑐) 
(65) 

 𝑞‾1𝑣 = 𝑘(𝑡),

𝑘(0) = {
𝑘1(0) if 𝜌(0) > 𝜌𝐿

𝑘2(0) otherwise,

𝑘(𝑡) = {

𝑘1(𝑡) if 𝑘(𝑡−) = 𝑘2 and 𝜌(𝑡) = 𝜌𝑈

𝑘2(𝑡) if 𝑘(𝑡−) = 𝑘1 and 𝜌(𝑡) = 𝜌𝐿

𝑘(𝑡−) otherwise,

, ∀𝑡 > 0

 

(66) 

 𝑣 =
𝑤𝑞1𝑣

𝑤𝜌𝑗 − 𝑞1𝑣
. (67) 
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where 𝑞1𝑣 = median{0, 𝑞‾1𝑣, 𝐶}, and the constants in equations 𝑘1 and 𝑘2 are defined as 
follows: 

𝑞𝑠 < min{𝑣𝑓𝜌
𝐿 , (1 − 𝜖0)𝐶𝑑, �̃�(�̃�

𝑗 − 𝜌𝑗)},  𝜆2 > 0,  𝜆1 > max {2√𝜆2, 𝑣𝑓 +
𝜆2
𝑣𝑓
} > 0, 

𝑐 =
𝜆1(𝜌(𝑡0) − 𝜌

⋆) − 𝜇𝑚
𝜆2

. 

In equation (66), 𝑘1(𝑡) = 𝑞𝑠, where 𝑞𝑠 is the constant flow rate that satisfies 𝑞𝑠 < min{𝑣𝑓𝜌
𝐿, 

(1 − 𝜖0)𝐶𝑑, �̃�(�̃�
𝑗 − 𝜌𝑗)} in order to decrease the density and keep it operating within the free 

flow region. Since the goal is to improve the throughput, the value of 𝑞𝑠 should be arbitrarily 

close to the value min{𝑣𝑓𝜌
𝐿, (1 − 𝜖0)𝐶𝑑, �̃�(�̃�

𝑗 − 𝜌𝑗)} as long as the inequality holds in order 

to take advantage of some of the road capacity potential. 𝑘2(𝑡) is a proportional-integral (PI) 
controller, in which the term 𝜆1(𝜌 − 𝜌

⋆) is the proportional term to drive 𝜌 towards 𝜌⋆, the 

term 𝜆2 (∫ (𝜌 − 𝜌
⋆)

𝑡

𝑡0
𝑑𝜏 − 𝑐) is the integral term to reject the disturbance 𝜇, and 𝑐 is a constant 

term that guarantees the asymptotic convergence of 𝜌 towards 𝜌⋆. The selection of 𝑐 and the 
lower bound of 𝜆1 is explained in detail in the proof of Lemma 1.2 and Theorem 1.8. 

Depending on the value of the flow density at the current time 𝜌(𝑡) and on whether at the 
previous time 𝑘1(𝑡

−) or 𝑘1(𝑡
−) is activated, the controller 𝑘(𝑡) switches according to the ’if 

conditions’ in equation (66). Note that while 𝑘2 is active, 𝜌(𝑡) < 𝜌𝐿. To prevent the 
disturbances from pushing the density towards the capacity drop region, the controller 
switches from 𝑘2 to 𝑘1 at 𝜌(𝑡) = 𝜌𝐿 in order to reduce the value of the traffic density and 
maintain it within the uncongested region of the fundamental diagram. Once 𝜌(𝑡) = 𝜌𝑈, the 
controller switches to the PI control 𝑘2 to drive the traffic density of the road section to the 
predetermined density 𝜌∗. In the 𝑘2(𝑡) equation, if 𝑘(0) = 𝑘2(0) at 𝑡 = 0, then 𝑡0 = 0. If 𝑘(𝑡) 
switches from 𝑘1(𝑡) to 𝑘2(𝑡) at 𝑡 ≠ 0, then 𝑡0 = 𝑡 is the switching time instant. After obtaining 
the value of the unconstrained control flow 𝑞‾1𝑣, we map the constraint controlled flow rate 
𝑞1𝑣 = median{0, 𝑞‾1𝑣, 𝐶} into the VSL control action via equation (67). 

Note that when 𝑘2(𝑡) is activated in equation (66), the value of the section density is strictly 

less than 𝜌𝑈, i.e., 𝜌 < 𝜌𝑈 <
𝐶𝑑

𝑣𝑓
. Therefore, 𝑞2 = 𝑣𝑓𝜌 and 𝑞1 = median{0, 𝑑, 𝑞‾1𝑣}, due to 𝑑 < 𝐶. 

Let 

 
𝛷(𝑡) = ∫ (𝜌(𝜏) − 𝜌⋆)

𝑡

𝑡0

𝑑𝜏 −
𝜆1(𝜌(𝑡0) − 𝜌

⋆) − 𝜇𝑚
𝜆2

, 𝑡 ≥ 𝑡0. 
(68) 
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Then, we have �̇�(𝑡) = 𝜌(𝑡) − 𝜌⋆. Since 𝛷(𝑡) = 𝛷(𝑡0) + ∫ �̇�
𝑡

𝑡0
(𝜏)𝑑𝜏,  𝑡 ≥ 𝑡0, we have that 

𝛷(𝑡0) = −
𝜆1(𝜌(𝑡0)−𝜌

⋆)−𝜇𝑚

𝜆2
. Therefore, with 𝑘(𝑡) = 𝑘2(𝑡), system (62)-(63) can be written as: 

where 

𝑞‾1𝑣 = 𝑘2(𝑡) = 𝑣𝑓𝜌 − 𝜆1(𝜌 − 𝜌
⋆) − 𝜆2𝛷, 

and 𝜆2 > 0, 𝜆1 > max{2√𝜆2, 𝑣𝑓 +
𝜆2

𝑣𝑓
} > 0. Let us first assume that capacity drop is ignored, 

i.e., (69) holds for all 𝜌(𝑡) ∈ ℜ. The following lemma describes the stability properties of (69). 
Lemma 1.2 is subsequently used to analyze the closed-loop system (62)-(63), with the controller 
(67), taking into account the capacity drop effect. 

Lemma 1.2. Consider system (69), if 𝑑 + 𝜇 ≥ 𝑣𝑓𝜌
⋆, we have the following results: 

1. System (69) has a unique equilibrium point [𝜌(𝑡)𝑒 , 𝛷(𝑡)𝑒]𝑇 = [𝜌⋆,
𝜇

𝜆2
]
𝑇

. 

2. ∀(𝜌(𝑡0), 𝛷(𝑡0)) ∈ ℜ
2, [𝜌(𝑡), 𝛷(𝑡)]𝑇 asymptotically converges to [𝜌⋆,

𝜇

𝜆2
]
𝑇

. 

3. ∀(𝜌(𝑡0), 𝛷(𝑡0)) ∈ 𝑆 = {(𝜌, 𝛷) |𝑣𝑓𝜌
⋆ − 𝜇 − 𝑑 ≤ (𝜆1 − 𝑣𝑓)(𝜌 − 𝜌

⋆) + 𝜆2 (𝛷 −
𝜇

𝜆2
) ≤

𝑣𝑓𝜌
⋆ − 𝜇} ∩ {(𝜌, 𝛷)| −

𝑣𝑓𝜌
⋆−𝜇

𝑣𝑓
< (𝜌 − 𝜌⋆) < −

𝑣𝑓𝜌
⋆−𝜇−𝑑

𝑣𝑓
}, then (𝜌(𝑡) − 𝜌⋆) ∈ 𝑆, ∀𝑡 ≥

𝑡0. 

Proof. The proof of Lemma Lemma 1.2 is in Appendix G.  

Based on the value of the inflow 𝑞1, Lemma 1.2 shows that the trajectories of system (69) 

asymptotically converge to the unique equilibrium point [𝜌(𝑡)𝑒 , 𝛷(𝑡)𝑒]𝑇 = [𝜌⋆,
𝜇

𝜆2
]
𝑇

. It follows 

from the proof that if system (69) holds for ∀𝜌 ∈ ℜ, then the unique equilibrium point 

[𝜌(𝑡)𝑒 , 𝛷(𝑡)𝑒]𝑇 = [𝜌⋆,
𝜇

𝜆2
]
𝑇

 is globally asymptotically stable. However, the proof also indicates 

that if the initial conditions (𝜌(𝑡0),𝛷(𝑡0)) are in the region 𝑆3 = {(𝜌, 𝛷)|(𝜆1 − 𝑣𝑓)(𝜌 − 𝜌
⋆) +

𝜆2 (𝛷 −
𝜇

𝜆2
)}, it is possible that the trajectory of 𝜌(𝑡) approaches −

𝑣𝑓𝜌
∗−𝜇−𝑑

𝑣𝑓
, which is already 

in the capacity drop region, where (69) does not hold. Fortunately, the initial conditions in 
system (69) are set to be in a certain region. Therefore, we only need to show that for some 
specific 𝜌(𝑡0), system (69) holds for all 𝑡 ≥ 𝑡0, and 𝜌(𝑡) converges to the predetermined 
density 𝜌⋆. The results of Lemma 1.2 are used as a stepping stone to help analyze the stability 
properties of the closed-loop system (62)-(63) with (67) in the following theorems. 

 �̇�(𝑡) = median{0, 𝑑, 𝑞‾1𝑣} − 𝑣𝑓𝜌 + 𝜇

�̇�(𝑡) = 𝜌(𝑡) − 𝜌⋆,  ∀𝑡 ≥ 𝑡0

𝜌(𝑡0) ≤ 𝜌
𝐿 , 𝛷(𝑡0) = −

𝜆1(𝜌(𝑡0) − 𝜌
⋆) − 𝜇𝑚

𝜆2

 

(69) 
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Theorem 1.8. Consider the system in (62)-(63) with the controller (67), if (𝑑 + 𝜇) ≥ 𝑣𝑓𝜌
⋆, then 

𝜌(𝑡) converges to 𝜌⋆ asymptotically with time, ∀𝜌(0) ∈ [0, 𝜌𝑗]. 

Proof. ∀𝜌(0) < 𝜌𝐿, 𝑘(0) = 𝑘2(0). If ∀𝑡 ≥ 0,  𝜌(0) < 𝜌
𝑈, then (69) holds for all 𝑡 ≥ 0, thus 𝜌(𝑡) 

converges to 𝜌⋆ asymptotically according to Lemma 1.2. If ∃𝑡 > 0, such that 𝜌(𝑡) = 𝜌𝑈, then 
𝑘(𝑡) switches to 𝑘1(𝑡) and for all 𝜌(𝑡) > 𝜌𝐿, �̇�(𝑡) < 0, thus ∃𝑡0 > 0, such that 𝜌(𝑡0) = 𝜌

𝐿 and 
𝑘(𝑡0) = 𝑘2(𝑡0). Similarly, ∀𝜌(0) > 𝜌𝐿, 𝑘(0) = 𝑘1(0), then ∃𝑡0 > 0, such that 𝜌(𝑡0) = 𝜌

𝐿 and 
𝑘(𝑡0) = 𝑘2(𝑡0). Therefore, we only need to consider the case when 𝜌(𝑡0) = 𝜌

𝐿 and 𝑘(𝑡0) =
𝑘2(𝑡0). To shift the equilibrium point of the system to the origin, define 𝑥1(𝑡) = 𝜌(𝑡) − 𝜌

⋆ and 

𝑥2(𝑡) = 𝛷(𝑡) −
𝜇

𝜆2
. As long as 𝑘(𝑡) = 𝑘2(𝑡), system (62)-(63) can be written as follows: 

�̇�1 = median{0, 𝑑, 𝑞‾1𝑣} − (𝑣𝑓𝜌
⋆ + 𝑣𝑓𝑥1) + 𝜇

�̇�2 = 𝑥1,  ∀𝑡 ≥ 𝑡0

𝑥1(𝑡0) = 𝜌
𝐿 − 𝜌⋆, 𝑥2(𝑡0) = −

𝜆1𝑥1(𝑡0) − 𝜇𝑚 + 𝜇

𝜆2

 

Since 𝑥2(𝑡0) = −
𝜆1𝑥1(𝑡0)−𝜇𝑚+𝜇

𝜆2
, we have that 𝜆1𝑥1(𝑡0) + 𝜆2𝑥2(𝑡0) = 𝜇𝑚 − 𝜇 > 0, and because 

of 𝜇𝑚 ≪ 𝑣𝑓𝜌
⋆, we also have 𝜆1𝑥1(𝑡0) + 𝜆2𝑥2(𝑡0) < 𝑣𝑓𝜌

⋆ − 𝜇. Furthermore, 𝑥1(𝑡0) = 𝜌
𝐿 −

𝜌⋆ > −
𝑣𝑓𝜌

⋆−𝜇𝑚

𝑣𝑓
> −

𝑣𝑓𝜌
⋆−𝜇

𝑣𝑓
. Similarly, 𝑥1(𝑡0) < −

𝑣𝑓𝜌
⋆−𝜇−𝑑

𝑣𝑓
. As a result, 𝑥(𝑡0) ∈ 𝑆. According to 

Lemma 1.2, as long as 𝑥1(𝑡) < 𝜌
𝑈 − 𝜌⋆ we have 

�̇� = 𝐴𝑥 

𝑥1(𝑡0) = 𝜌
𝐿 − 𝜌⋆, 𝑥2(𝑡0) = −

𝜆1𝑥1(𝑡0)

𝜆2
 

where 

𝐴 = [
−𝜆1 −𝜆2
1 0

]. 

Since 𝜆1 > 2√𝜆2, A has two real negative roots, i.e., 

𝑝1 =
−𝜆1 +√𝜆1

2 − 4𝜆2
2

,  𝑝1 =
−𝜆1 −√𝜆1

2 − 4𝜆2
2

 

where 0 > 𝑝1 > 𝑝2. We can calculate that 

𝑒𝐴𝑡 = ℒ−1[(𝑠𝐼 − 𝐴)−1] = [
𝑎11(𝑡) 𝑎12(𝑡)

𝑎21(𝑡) 𝑎22(𝑡)
] 

where 

𝑎11(𝑡) =
1

2
(𝑒𝑝1𝑡 + 𝑒𝑝2𝑡) −

𝜆1
𝑝1 − 𝑝2

(𝑒𝑝1𝑡 − 2𝑒𝑝2𝑡) 
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and 

𝑎12(𝑡) = −
𝜆2

𝑝1 − 𝑝2
(𝑒𝑝1𝑡 − 𝑒𝑝2𝑡). 

Therefore, 

𝑥(𝑡) = 𝑥1(𝑡0)𝑎11(𝑡 − 𝑡0) + 𝑥2(𝑡0)𝑎12(𝑡 − 𝑡0)

=
1

2
𝑥1(𝑡0)(𝑒

𝑝1(𝑡−𝑡0) + 𝑒𝑝2(𝑡−𝑡0)) −
𝜆1𝑥1(𝑡0) + 𝜆2𝑥2(𝑡0)

𝑝1 − 𝑝2
(𝑒𝑝1(𝑡−𝑡0) − 𝑒𝑝2(𝑡−𝑡0))

 

Since 𝑝1 > 𝑝2, 𝑥1(𝑡0) ≤ 0 and 𝜆1𝑥1(𝑡0) + 𝜆2𝑥2(𝑡0) > 0, we have that 𝑥(𝑡) < 0,  ∀𝑡 ≥ 𝑡0. 
Consequently, �̇�1 = −𝑣𝑓𝑥1 − 𝑣𝑓𝜌

⋆ + 𝜇 + 𝑑 and �̇�2 = 𝑥1, for all 𝑡 > 𝑡0. According to 

Lemma 1.2, 𝑥1(𝑡) converges to 0 asymptotically, which implies that 𝜌(𝑡) asymptotically 

converges to 𝜌⋆, ∀𝜌(0) ∈ [0, 𝜌𝑗].  

Theorem 1.8 shows that if (𝑑 + 𝜇) ≥ 𝑣𝑓𝜌
⋆, then controller (67) drives 𝜌(𝑡) to 𝜌⋆ 

asymptotically. In the case when (𝑑 + 𝜇) < 𝑣𝑓𝜌
⋆, the dynamics and the stability properties of 

the closed-loop system are given by the following theorem. 

Theorem 1.9. Consider the system in (62)-(63) with the controller (67), if (𝑑 + 𝜇) < 𝑣𝑓𝜌
⋆, then 

𝜌(𝑡) converges to 
(𝑑+𝜇)

𝑣𝑓
 asymptotically with time, ∀𝜌(0) ∈ [0, 𝜌𝑗]. 

Proof. Since 𝑑 + 𝜇 < 𝑣𝑓𝜌
⋆, then ∃𝜂 > 0, such that 𝑑 + 𝜇 ≤ 𝑣𝑓𝜌

⋆ − 𝜂. Similar to the analysis in 

Theorem 1.8, we only need to consider the case where 𝜌(𝑡0) ≤ 𝜌
𝐿 and 𝑘(𝑡0) = 𝑘2(𝑡0). Let 

𝑥1(𝑡) = 𝜌(𝑡) − 𝜌
⋆ and 𝑥2(𝑡) = 𝛷(𝑡) −

𝜇

𝜆2
 in order to shift the equilibrium point of the system 

to (0,0). Then, according to (62)-(63), we have 

�̇�1 ≤ 𝑑 − 𝑞2 + 𝜇 = 𝑑 + 𝜇 − (𝑣𝑓𝜌
⋆ + 𝑣𝑓𝑥1) 

Thus, ∀𝑥1(𝑡0) ≤ 𝜌
𝐿 − 𝜌⋆, 𝑥1(𝑡) ≤

𝑑+𝜇

𝑣𝑓
− 𝜌⋆, ∀𝑡 ≥ 𝑡0. Therefore, 

𝑥2(𝑡) = 𝑥2(𝑡0) + ∫ 𝑥1

𝑡

𝑡0

(𝑡)𝑑𝜏 −
𝜇

𝜆2
≤ 𝑥2(𝑡0) −

𝜇

𝜆2
− 𝜂(𝑡 − 𝑡0), 𝑡 ≥ 𝑡0 

which decreases to negative infinity as 𝑡 increases. As a result, 𝑞1 saturates at the value of 𝑑, 

and thus �̇�1 = 𝑑 + 𝜇 − (𝑣𝑓𝜌
⋆ + 𝑣𝑓𝑥1). Therefore, 𝑥1 converges to 

(𝑑+𝜇)

𝑣𝑓
− 𝜌⋆, which implies 

that 𝜌(𝑡) asymptotically converges to 
(𝑑+𝜇)

𝑣𝑓
, ∀𝜌(0) ∈ [0, 𝜌𝑗].  

In summary, with the proposed controller, if the sum of the upstream demand 𝑑 and the 
disturbance 𝜇 is greater than or equal to the predetermined equilibrium flow, the density in the 
section will converge to the equilibrium point 𝜌⋆. If the sum of the upstream demand 𝑑 and the 

disturbance 𝜇 is less than the predetermined equilibrium flow, the density converges to 
𝑑+𝜇

𝑣𝑓
, at 
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which the steady state flow 𝑑 + 𝜇 is the maximum possible value. Note that the selection of 𝜌𝐿 
affects the distance from the switching point to the desired equilibrium point. According to the 
proof of Theorem 1.8, we can select 𝜌𝐿 = 𝜌⋆, which still guarantees convergence. In addition, 
since 𝜌(𝑡) always converges to 𝜌⋆ from the left side, 𝜌⋆ can be arbitrarily chosen to be close to 
𝐶𝑑

𝑣𝑓
, as long as the inequality 0 < 𝜌𝐿 ≤ 𝜌⋆ < 𝜌𝑈 <

𝐶𝑑

𝑣𝑓
 holds. 

Numerical Simulations 

In this section, the commercial microscopic simulator VISSIM is used to evaluate the 
performance of the proposed robust VSL control. The results are compared with those 
generated by the macroscopic CTM used in the design and analysis. 

Simulation Network and Fundamental Diagram 

The traffic flow on the southbound segment of the I-710 freeway in Long Beach, California, 
United States, is simulated using the microscopic simulator VISSIM, without considering the on-
ramps and off-ramps. The considered section of the freeway to be controlled has 3 lanes and is 
divided into two segments of length 0.71 𝑚𝑖𝑙𝑒 and 0.36 𝑚𝑖𝑙𝑒 upstream of a bottleneck 
location, as shown in Figure 98. 

 

Figure 98. Simulation Network of the I-710 Freeway 

Under different levels of traffic demand and by taking into account the high volume of heavy 
trucks (since the freeway is close to the port of Long Beach), the data of the density and flow 
rate of the 0.71-mile segment are collected in order to obtain the fundamental diagram for the 
case of no bottleneck. Then, a bottleneck is created by introducing an incident that blocks the 
middle lane, and the data of the density and flow rate are gathered to demonstrate the 
fundamental diagram for this case. As shown in Figure 99, the blue line describes the 
fundamental diagram of the 0.71 mile-long segment without incident. The maximum capacity 
of the road segment is 8460 𝑣𝑒ℎ/ℎ𝑟, which corresponds to a critical density 𝜌𝑐 = 140 
𝑣𝑒ℎ/𝑚𝑖𝑙𝑒. The free flow speed is 𝑣𝑓 = 60 𝑚𝑖𝑙𝑒/ℎ𝑟. If the bottleneck is activated, then the 

resulting fundamental diagram is shown by the red line in the same figure, where the maximum 
capacity in this case is 5200 𝑣𝑒ℎ/ℎ𝑟. 
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Figure 99. Fundamental Diagrams of the Road Section with VISSIM Data Points 

Simulation Results 

Macroscopic Simulation 
The resulting data from the microscopic simulator are used to validate the macroscopic model. 
The macroscopic simulations are performed on a single-section road network with the following 

parameters: 𝐶 = 8460 𝑣𝑒ℎ/ℎ𝑟, 𝑣𝑓 = 60 𝑚𝑖𝑙𝑒/ℎ𝑟, 𝜌𝑗 =460 𝑣𝑒ℎ/𝑚𝑖𝑙𝑒, �̃�𝑗 = 980 𝑣𝑒ℎ/𝑚𝑖𝑙𝑒, 

𝑤 = 21 𝑚𝑖𝑙𝑒/ℎ𝑟, �̃� = 10 𝑚𝑖𝑙𝑒/ℎ𝑟, 𝐶𝑑 = 5200 𝑣𝑒ℎ/ℎ𝑟, and the demand 𝑑 = 6000 𝑣𝑒ℎ/ℎ𝑟. The 
controller is applied to the single-section system with the following design constants: 𝜆1 = 200, 
𝜆2 = 900, 𝜇𝑚 = 350 𝑣𝑒ℎ/ℎ𝑟, 𝑞𝑠 = 3200 𝑣𝑒ℎ/ℎ𝑟, 𝜌∗ = 𝜌𝐿 = 75 𝑣𝑒ℎ/𝑚𝑖𝑙𝑒, and 𝜌𝑈 = 84 
𝑣𝑒ℎ/𝑚𝑖𝑙𝑒. It is assumed that the incident takes place 25 minutes after the simulation starts and 
remains for 30 minutes. Figure 100, Figure 101, and Figure 102 show the behavior of the flow 
rates, density and the VSL commands, respectively, with both the macroscopic and microscopic 
simulations shown together for the sake of comparison. The solid red lines illustrate the 
macroscopic results. As seen from the Figure 101, when the incident happens at 1500 𝑠𝑒𝑐, the 
density is 100 𝑣𝑒ℎ/𝑚𝑖𝑙𝑒, which is greater than 𝜌𝐿. It results in reducing the inflow 𝑞1, 
represented by the red line in Figure 100 (a), since 𝑞1𝑣 = 𝑞‾1𝑣 = 𝑞𝑠 = 3200 𝑣𝑒ℎ/ℎ𝑟. Thus, the 
VSL command is 𝑣 = 10 𝑚𝑖𝑙𝑒/ℎ𝑟. The outflow 𝑞2, represented by the red line Figure 100 (b), 
decreases as the value of 𝜌 keeps decreasing until 𝜌 ≤ 𝜌𝐿. At that moment, the PI controller 
takes over and eventually forces the outflow to converge to 4500 𝑣𝑒ℎ/ℎ𝑟, which corresponds 
to the predetermined density value 𝜌∗ = 75 𝑣𝑒ℎ/𝑚𝑖𝑙𝑒, where the VSL commands are 𝑣 = 15 
𝑚𝑖𝑙𝑒/ℎ𝑟. During the incident time (from 1500 to 3300 𝑠𝑒𝑐), there is a difference of 300 𝑣𝑒ℎ/ℎ𝑟 
between the values of 𝑞1 and 𝑞2 since 𝑞1 − 𝑞2 + 𝜇 = 0. After the incident is removed, the VSL 
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displays the value of 60 𝑚𝑖𝑙𝑒/ℎ𝑟, and both inflow and outflow converge to the constant 
demand 𝑑 = 6000 𝑣𝑒ℎ/ℎ𝑟. 

 

Figure 100. Macroscopic/Microscopic Behavior of q1 & q2 of the Closed-loop System 

 

Figure 101. Density of Discharging Section 
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Figure 102. VSL Commands 

Microscopic Simulation 
The proposed controller is evaluated using the commercial software VISSIM by applying it to 
the same simulated segments of the I-710 freeway in Long Beach. The freeway is injected with 
demand 𝑑 = 6000 𝑣𝑒ℎ/ℎ𝑟, with the consideration that the traffic flow in that area has a high 
volume of trucks since it is near Long Beach Port. The middle lane is blocked with an accident in 
order to create a bottleneck. The accident takes place 25 minutes after the simulation starts 
and lasts for 30 minutes (1500 to 3300 𝑠𝑒𝑐). The VSL commands are given to vehicles at the 
beginning of each section, as illustrated in Figure 98. 

The blue curves in Figure 100, Figure 101, and Figure 102 show the microscopic behavior of the 
inflow, the outflow, the density of the discharging section, and the VSL commands. When the 
accident happens at 1500 𝑠𝑒𝑐, the VSL control is activated by gradually reducing the speed in 
steps of 5 𝑚𝑖𝑙𝑒/ℎ𝑟 to ensure safety for the drivers, until it reaches 10 𝑚𝑖𝑙𝑒/ℎ𝑟. Then it 
increases to 15 𝑚𝑖𝑙𝑒/ℎ𝑟 where it stays the same until the incident is cleared, as represented by 
the blue curve in Figure 102. The outflow 𝑞2 reduces dramatically from around 6500 𝑣𝑒ℎ/ℎ𝑟 to 
approximately 3600 𝑣𝑒ℎ/ℎ𝑟. Then, it slightly increases and fluctuates around 4500 𝑣𝑒ℎ/ℎ𝑟. 
However, once the incident is removed, the flow jumps immediately to around 8400 𝑣𝑒ℎ/ℎ𝑟 
and then gradually decreases with time, when it fluctuates around 6000 𝑣𝑒ℎ/ℎ𝑟. As illustrated 
by the blue curve in Figure 101, the VSL stabilizes the density around 𝜌∗ = 75 𝑣𝑒ℎ/𝑚𝑖𝑙𝑒 and 
stays less than 𝜌𝑈 = 84 𝑣𝑒ℎ/𝑚𝑖𝑙𝑒. The resulting VISSIM curves of the inflow, the outflow, the 
density of the discharging section, and the VSL commands are similar to the ones carried out by 
the macroscopic simulations. 

The microscopic VISSIM simulator is also used to compare the open loop to the closed-loop 
system for the outflow, density, and the queue length. Figure 103 represents the discharging 
flow of the bottleneck with and without control. 
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Figure 103. Discharging Flow Rate 

In the case of no control, illustrated by the green curve, the flow rate at the bottleneck drops to 
around 3380 𝑣𝑒ℎ/ℎ𝑟 due to the lane closure and capacity drop. When the incident is cleared, 
the flow rate increases directly to 7500 𝑣𝑒ℎ/ℎ𝑟. Then, it concentrates around 6000 𝑣𝑒ℎ/ℎ𝑟. 
When the VSL controller is applied, illustrated by the blue curve, the flow rate decreases to 
around 4500 𝑣𝑒ℎ/ℎ𝑟, which is higher by 33% compared to that in the no control case during 
the time of the incident. It then increases to approximately 6000 𝑣𝑒ℎ/ℎ𝑟 after the incident is 
over. 

As seen in Figure 104, the density of the discharging section (green curve) starts increasing due 
to the incident from around 100 to 350 𝑣𝑒ℎ/𝑚𝑖𝑙𝑒 since no control action is applied. 

 

Figure 104. Density of Discharging Section 
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Then the density stays around 350 𝑣𝑒ℎ/𝑚𝑖𝑙𝑒 until the incident is removed. When the VSL 
control is applied, the density (blue curve) is stabilized around the preset density value 𝜌∗ = 75 
𝑣𝑒ℎ/𝑚𝑖𝑙𝑒, which is much lower than the scenario without control. 

The definition that the authors used in (Y. Zhang et al. 2018) to track the number of vehicles 
lined up at the entrance of the controlled sections is used here to measure the queue length. 
Let 𝑄 represent the number of vehicles in the queue. Using the flow conservation equation, we 

have �̇� = 𝑑 − 𝑞1. Note that 𝑄 only tracks the length of the upstream queue. Therefore, the 
stability of the closed-loop system is not affected. 

 

Figure 105. Growth and Discharge of the Queue 

Figure 105 shows the time evolution of the queue length for both open-loop and closed-loop 
systems, represented by the green and blue curves, respectively. In the case of closed-loop 
system, the queue length increases less rapidly, reaches a lower maximum and decreases fast 
when the incident is removed compared to the no control case. 

Conclusion 

Based on the first-order macroscopic Cell Transmission Model (CTM) of traffic flow, we design, 
analyze, and evaluate the performance of several integrated highway traffic flow control 
strategies in both macroscopic and microscopic simulations. We discover that the unmanaged 
forced lane-changing behavior in the vicinity of highway bottlenecks is a major reason for the 
capacity drop phenomenon. Motivated by that, we propose a Lane Change (LC) controller that 
provides lane change recommendations to upstream vehicles in order to avoid the capacity 
drop. Two types of Variable Speed Limit (VSL) controllers, together with the LC controller, are 
designed and demonstrated improvements in traffic mobility, safety, and environmental impact 
at highway bottlenecks. The combined LC and feedback linearization VSL controller show 
analytically that the trajectories of the closed-loop system converge to the desired equilibrium 
point, which corresponds to the maximum possible throughput. 
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In addition, the combined LC and VSL controller is extended to coordinate with ramp metering 
controllers. As demonstrated by the Monte-Carlo microscopic simulations, the coordinated VSL, 
RM, and LC controller has significantly improved the system performance, maintained the 
queue length of on-ramps, and fulfilled the fairness between the mainline traffic flow and on-
ramp flows. Then, the proposed controller was compared to the widely used MPC controller. 
The performance and robustness of both integrated control schemes are compared with 
respect to perturbations on traffic demand, model parameters, and measurement noise. The 
simulation results confirm that both controllers are able to improve the total time spent (TTS). 
Though the MPC follows an optimization-based routine, the FL-based VSL guarantees 
exponential stability with negligible computational effort and similar robustness. 

Furthermore, the most updated version of the cell transmission traffic flow model (CTM), which 
considers the capacity drop phenomenon and the bounded acceleration effects, is modified to 
include a constant disturbance term, which accounts for the uncertainties in the model due to 
the inevitable parametric modeling and measurement errors. The open-loop stability properties 
of the modified CTM are investigated under all possible traffic flow scenarios. The open-loop 
stability analysis shows that the disturbance directly influences the location of the equilibrium 
points on the fundamental diagram, resulting in triggering the capacity drop phenomena much 
earlier. To reject the disturbance, therefore, while improving the throughput, a robust VSL 
controller is introduced, and the stability properties of the closed-loop system are analyzed. 
Our findings have shown that the proposed controller guarantees that the traffic density of a 
considered highway road section converges asymptotically with time to a predetermined 
desired density located in the free-flow region of the fundamental diagram. Both macroscopic 
and microscopic simulation results demonstrate that the robust control scheme is able to 
stabilize the density of the road section at the desired density, and, as a result, it improves the 
discharging flow rate by 33%, compared to the case of no control action.  
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Intelligent Parking Assist System 

Filipe Vital, Department of Electrical and Computer Engineering, University of Southern 
California 
Petros Ioannou, Department of Electrical and Computer Engineering, University of Southern 
California 

Introduction 

It was estimated that, in the year of 2013, trucks were responsible for carrying around 70% (in 
weight) of USA’s total freight shipments, without considering multimodal shipments that use 
trucks at some point (U.S. Department Of Transportation 2015). It is expected that this value 
will still be as high as 66% by the year of 2040, despite substantial increases in multimodal and 
rail shipments (U.S. Department Of Transportation 2015). This shows just how important trucks 
are to the USA economy. However, the increasing demand for trucks comes with a need for 
supporting infrastructure and legislation, in particular, appropriate parking infrastructure. In 
2015, a survey by the Federal Highway Administration identified truck parking shortages in 36 
US states, with more pronounced issues along major trade corridors (U.S. Department of 
Transportation 2015). The lack of truck parking can have significant impact on road safety, 
industry costs, and the environment (Rodier et al. 2010; Sochor and Mbiydzenyuy 2013), and 
ranked among the trucking industry’s top concerns in recent surveys by the American 
Transportation Research Institute (ATRI) (American Transportation Research Institute 2019). As 
expanding the infrastructure would require significant capital investment, this issue points to 
the need for better utilization of the existing truck parking capacity. 

One of the requirements for efficient utilization of the truck parking capacity is having enough 
information about the truck parking system. Recently, the topic of smart parking systems has 
become increasingly popular, with research on parking occupancy sensing and information 
distribution systems for both passenger vehicles and trucks (T. Lin, Rivano, and Le Mouel 2017; 
de Almeida Araujo Vital, Ioannou, and Gupta 2020). Nevertheless, drivers’ direct usage of 
occupancy information can only help with last minute adjustments to the schedule and might 
not be as helpful in high-demand areas where all rest areas might be full during peak hours. 
Parking availability information could be used more effectively if included in the earlier stages 
of planning, when the route and schedule are decided. Ideally, an integrated planning system 
with access to data on the location and predicted availability of all rest areas would be able to 
choose an optimal route and schedule, such that: working hours regulations are satisfied; and 
off-duty time is scheduled only at locations that are expected to have available parking at the 
time of arrival. This type of system is the subject of this research. 

An important aspect of truck parking availability is its time dependence. Although drivers often 
report difficulties finding parking and truck stops report operating overcapacity, they usually 
refer to the period between 7 PM and 5 AM when drivers are looking for overnight parking 
(U.S. Department of Transportation 2015; NCDOT 2017; Boris and Brewster 2018; Martin and 
Shaheen 2013). This suggests that it may be possible to mitigate the truck parking shortage by 
encouraging drivers to plan their stops on off-peak periods, thus balancing the demand. 
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Balancing the demand with respect to space may also be an option. Several factors influence 
drivers’ choice of parking location; however, lack of information can lead drivers to park illegally 
even when there are facilities with available parking nearby (Rodier et al. 2010). In (U.S. 
Department of Transportation 2015), less than 50% of truck stops reported working 
overcapacity. Many of the facilities operating under capacity may be in regions with low parking 
demand, yet, some may be in high-demand areas and are underutilized because drivers do not 
know they are viable options. With this in mind, it is worth considering to include parking 
availability earlier in the planning process. Instead of only providing drivers information on 
facilities along their path to allow for on-trip decisions, if parking information is considered 
when choosing the path itself, the existing parking capacity could be better utilized. Depending 
on the situation, it may be advantageous for the driver to take a longer route if that can 
guarantee available parking. This suggestion of addressing parking issues at the supply chain 
level has been brought up before in (Phelan et al. 2016); however, literature on the topic is still 
scarce. Previous studies focused on developing methods to estimate truck parking demand, 
predict parking occupancy, and measure parking occupancy for parking management systems. 
Some pilot projects distribute real-time availability information through websites or variable-
message signs on nearby highways. However, judging how to best use the information, if at all, 
is up to the drivers. These systems can only assist drivers with small on-trip schedule 
adjustments as using all this information to generate regulation-compliant itineraries is not 
trivial, and most systems do not include an occupancy prediction feature either. 

Another interesting topic to be considered is how this issue affects battery electric trucks (BET). 
Among the concerns regarding heavy-duty vehicles electrification are the reduced range, longer 
recharge time and the reduction in maximum payload due to added battery weight. However, it 
is often overlooked that commercial drivers are required to stop and rest regularly regardless of 
the vehicle’s range. Even if long-haul trucks drive on average 600 miles per day (Smith et al. 
2019), they are required to stop for at least 30 minutes every 8 hours and for at least 10 hours 
after 11 hours of driving time. Adequate infrastructure and efficient trip planning can mitigate 
the range issue by recharging the vehicle during mandatory stops. Nevertheless, recharging 
does take longer than refueling and charging stations are not abundant, making charging 
station availability an issue for BETs. 

Truck parking is already considered a critical issue for the trucking industry, and the similar 
issue of recharge station availability and electric vehicles’ range are obstacles to the adoption of 
heavy-duty BETs. Therefore, this project focuses on the following topics: 

1. How to integrate parking availability information into the planning of truck drivers’ 
itineraries? 

2. How are trip cost and duration affected by stricter parking restrictions? Is it financially 
interesting to the industry? 

3. What is the effect of working hour regulations and parking restrictions on the economic 
viability of battery electric trucks? 
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To answer the above questions, this study addresses the ‘Truck Driver Scheduling Problem 
under Parking Availability Constraints’ (TDSP-PA) and its variants. The TDSP-PA, presented in 
the section Truck Driver Scheduling Problem, aims to calculate optimal schedules such that they 
are regulation-compliant and guarantee appropriate parking at required stops. Section Shortest 
Path and Truck Driver Scheduling Problem extends the TDSP-PA to include path planning, 
studies how the optimal route is affected by parking conditions, and the potential costs of 
disregarding parking shortages. Section Long Haul Battery Electric Truck Planning extends the 
problem to electric trucks and studies the effect of parking constraints on electric trucks’ 
performance. Additional details on TDSP extensions are also provided in Appendix H.  



 163 

Truck Driver Scheduling Problem 

Section based on the publication: 

F. Vital and P. Ioannou, “Long-Haul Truck Scheduling with Driving Hours and Parking Availability 
Constraints,” in 2019 IEEE Intelligent Vehicles Symposium (IV), vol. June, jun 2019, pp. 620–625. 

Introduction 

According to the U.S. Department of Transportation (USDOT), 36 states are experiencing 
shortages in rest areas (U.S. Department of Transportation 2015). Truck parking shortages can 
lead to illegal parking, drowsy driving and prolonged time looking for parking, affecting 
negatively drivers’ safety, operating costs and the environment. As expanding the infrastructure 
would require significant capital investment, this issue points to the need for better utilization 
of the existing truck parking capacity. 

One of the requirements for efficient utilization of the truck parking capacity is having enough 
information about the truck parking system. Recently, the topic of smart parking systems has 
become increasingly popular, with research on parking occupancy sensing and information 
distribution systems for both passenger vehicles and trucks (Bayraktar et al. 2015; Morris et al. 
2018). Nevertheless, the direct usage of the occupancy information by the drivers can only help 
with last minute adjustments to the schedule and might not be as helpful in high-demand areas 
where all rest areas might be full during peak hours. Parking availability information could be 
used more effectively if included in the earlier stages of planning, when the route and schedule 
are decided. Ideally, an integrated planning system with access to data on the location and 
predicted availability of all rest areas would be able to choose an optimal route and schedule, 
such that the schedule satisfies the driving hours regulations and only schedules stops at 
locations that are expected to have available parking at the time of arrival. 

The truck driver scheduling problem (TDSP) under HOS regulations has been studied both as a 
part of a vehicle routing problem (Kok, Hans, et al. 2010; Asvin Goel and Irnich 2017) and by 
itself (A. Goel 2010; Asvin Goel and Kok 2012; Asvin Goel 2012; Koç et al. 2016; Kok, Hans, and 
Schutten 2011; Archetti and Savelsbergh 2009). Different versions of the TDSP were considered, 
the main differences being: parking restrictions, the HOS regulation considered, and if the 
solution is optimal or only feasible. In (Archetti and Savelsbergh 2009; A. Goel 2010; Asvin Goel 
and Kok 2012; Asvin Goel and Irnich 2017), the authors do not consider specific parking 
locations, treating the problem as if trucks could park at any point along the route, which is not 
true in practice. In some cases, the authors restrict parking to client locations (Kok, Hans, and 
Schutten 2011; Asvin Goel 2012; Kok, Hans, et al. 2010), and propose to model rest areas as 
customer locations with zero service time and an unbounded time-window. In (Asvin Goel 
2012), a mixed integer programming (MIP) model to the TDSP was presented. This model 
restricts parking to client locations and considers the common types of restrictions present in 
HOS regulations, allowing it to model or approximate different regulations. Similar MIP models 
were used in (Kok, Hans, and Schutten 2011; Koç et al. 2016). In (Koç et al. 2016), Koç includes 
an environmental impact factor dependent on the types of idling used in each stop. Parking is 
restricted to rest areas, but they are assumed to be always available. In (Kok, Hans, and 
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Schutten 2011), Kok studied the problem of optimizing the departure time and schedule with 
time-dependent travel times. Although many methods already restrict parking to suitable areas 
such as customer sites or rest areas, the possibility of the rest areas being full at certain times is 
not considered. Furthermore, the existing work usually limits the planning horizon and/or the 
total on-duty time to avoid the rules that regulate longer trips. 

In this paper we focus on the issues of parking availability and long trips HOS regulations. Our 
first contribution is introducing the TDSP with parking availability, which is a variant of the TDSP 
that assumes that parking locations are subject to availability constraints. The second 
contribution is to include the USA HOS rule for long trips, i.e., trips with more than 60 hours of 
on-duty time, in the MIP model for the TDSP. This paper is organized as follows: section USA’s 
Hours of Service Regulations introduces the HOS regulation that was considered; Problem 
Description presents the problem description; section Model describes the MIP model; section 
Experiments describes the experiments and results; and section Conclusion presents the 
conclusion and future work. 

USA’s Hours of Service Regulations 

The current USA HOS regulation (Code of Federal Regulations, n.d.) differentiates between 
driving time, on-duty time and off-duty time. In summary, driving time is the time spent 
operating the truck, on-duty time is the time from when the driver is required to be ready for 
work until he/she is relieved from work, and off-duty is the time when the driver is not on-duty. 
The time restrictions set by the regulation can be reset by an off-duty periods with minimum 
durations specified in the regulation. We refer to off-duty periods lasting at least 0.5, 10, and 34 
consecutive hours, as breaks, daily rests and weekly rests, respectively. Note that the longer off-
duty periods can be used to reset the restrictions related to the shorter ones. The USA HOS 
regulation can be summarized as follows: 

• Daily Driving Time Limit: A driver may drive at most 11 hours between 2 consecutive 
daily rests. 

• 14-Hour Elapsed Time Limit: A driver cannot drive after 14 hours have elapsed since the 
last daily rest ended. 

• Rest Breaks: A driver cannot drive after 8 hours have elapsed since the last break ended. 

• 60-Hour Limit: A driver cannot drive after having been on duty for 60 hours in any 
period of 7 consecutive days. The 7 days period can be reset by taking a weekly rest. 

Problem Description 

We consider the problem of scheduling the rest stops for a long-haul truck trip with a known 
route and a single client while taking into account the USA HOS regulations and estimated 
parking availability windows for all rest areas along the route. It is assumed that the rest areas 
are located on the route and require no detours to be accessed. The parking availability time-
windows are assumed known. The route has 𝑛 + 1 nodes, 2 of which are the origin, node 0, and 
destination of the truck, node 𝑛. The other 𝑛 − 1 are rest areas located along the route. For 

each node 𝑖 ∈ {0,1, … , 𝑛} the variable 𝑥𝑖 = (𝑥𝑖,𝑎, 𝑥𝑖,𝑑) represents the arrival and departure 
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times of the truck at that node. Each rest area 𝑖 has 𝑇𝑖 parking availability time-windows 

[𝑡𝑖,𝜏
𝑚𝑖𝑛, 𝑡𝑖,𝜏

𝑚𝑎𝑥], where 𝜏 ∈ {1,2, … , 𝑇𝑖} indicates the time-window’s index. The time-windows 

restrict the arrival time at that node and are only in effect when the truck has to stop at that 
specific node, driving by it is not constrained by the time windows. For each location and time-
window, a binary variable 𝑦𝑖,𝜏 represents if that specific time window is being used (yes:1, 

no:0). Driving by without stopping is represented by the variable 𝑦𝑖,0 (drive by:1, stop:0). The 
travel time 𝑑𝑖,𝑖+1 in between nodes is considered known and independent of time. The planning 
horizon is denoted by 𝑡ℎ𝑜𝑟. The driver must reach its destination before the specified planning 
horizon. Figure 106 shows an example of a route with origin 𝑣0, 3 rest areas 𝑣1, 𝑣2 and 𝑣3 with 
3 time-windows each, and a destination 𝑣4 also with 3 time-windows. 

 

Figure 106. Simple route with 5 locations (origin, 3 rest areas and destination) with 3 time-
windows each. 

The schedule must comply with the HOS regulations described in the section USA’s Hours of 
Service Regulations. 𝑅 is defined as the set of different types of rest period described in the 
regulation. For each 𝑟 ∈ 𝑅, 𝑡𝑟 defines the minimum duration of that type of rest period. 𝐶 is the 
set of constraints imposed by the regulation. 𝐶1 ⊆ 𝐶 is the set of constraints controlling the 
maximum elapsed time between off-duty periods. 𝐶2 ⊆ 𝐶 is the set of constraints controlling 
the maximum accumulated driving time between off-duty periods. 𝐶3 ⊆ 𝐶 is the set of 
constraints controlling the maximum accumulated on-duty time during a rolling time-window; 
the width of the time-window for a constraint 𝑐 ∈ 𝐶3 is represented by 𝛿𝑐. In the USA 
regulation 𝛿𝑐 is 7 days, so these rolling time-window constraints will be referred to as weekly 
constraints. For each constraint 𝑐 ∈ 𝐶, 𝑡𝑐 is the time limit imposed by the regulation and 𝑅𝑐 ⊆
𝑅 is the set of rest types that can reset this counter. The binary variable 𝑧𝑖,𝑟 indicates whether a 

rest of type 𝑟 is taken at location 𝑖 (yes:1, no:0). The driver cannot take more than 1 type of rest 
at the same location. If no type of rest is schedule for a rest area, the driver cannot stop there. 

The departure time from the origin must be within the interval [𝑡0, 𝑡𝑑𝑒𝑝]. It is assumed that the 

driver has been off-duty for long enough before the departure time, so that all constraints’ 
counters are reset before departure. Table 21 lists all the variables and parameters used in the 
model, some of which are defined in the following section. 
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Table 21. Variables & Parameters 

Variables 

Symbol Description 

𝑥𝑖, 𝑎, 𝑥𝑖, 𝑑 Arrival/Departure times from location i 

𝑦𝑖, 𝜏 Used time-window τ at location i? 

𝑦𝑖, 0 Drove by location i? 

𝑧𝑖, 𝑟 Rest of type 𝑟 was taken at location 𝑖? 

𝜆𝑖, 𝑗, 𝑐 Accumulated driving time from a trip departing location i at time xj,a, relative to 
constraint c ∈ C3 

𝜓𝑖, 𝑗, 𝑐 Accumulated driving time from trips departing locations 0 to i at time xj,a, relative 
to constraint c ∈ C3 

𝛼∗, 𝛽∗ Auxiliary variables for ramp constraints 

 Parameters 

Symbol Description 

𝑇𝑖 Number of time-windows at location 𝑖 

𝑡𝑖,τ
𝑚𝑖𝑛, 𝑡𝑖,τ

𝑚𝑎𝑥  Lower/Upper limit of τ-th time-window at location i 

𝑅 Set of rest types defined in the regulation 

𝐶 Set of constraints defined in the regulation 

𝑡𝑐 Time limit related to constraint 𝑐 ∈ 𝐶 

δ𝑐  Rolling time-window’s width for constraint 𝑐 ∈ 𝐶3 

𝑅𝑐 Set of rest types that can reset constraint 𝑐 ∈ 𝐶 

𝑡𝑟 Minimum duration for rest of type 𝑟 ∈ 𝑅 

𝑑𝑖,𝑖+1 Travel time between location 𝑖 and 𝑖 +  1 

𝑡ℎ𝑜𝑟 Planning time horizon 

𝑡𝑑𝑒𝑝 Maximum departure time from the origin 

Model 

A MIP model for the TDSP under HOS regulations has been proposed by Goel in (Asvin Goel 
2012). This model considers that the prediction horizon is limited to 1 week, that drivers may 
rest at client locations, and that parking locations are always available. Our model considers 
similar HOS regulations, but restricts parking to rest areas with available parking spaces, and 
includes the USA regulations for longer trips. Section Parking Availability Constraints presents 
the model used for short trips which includes the parking availability. The weekly constraints 
are introduced on section Weekly Constraints. 

Parking Availability Constraints 

Other formulations model all nodes in the network as required stops with client locations 
having one or more time-windows constraints, and parking locations having a single unbounded 
time-window. In this model we aim to address the issue of parking availability, so these past 
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approaches are not directly applicable. We model parking availability as time-windows 
constraints for each parking location. However, unlike client locations, the rest areas are not 
required stops, and if the driver is not stopping at a certain location, there is no need to restrict 
the schedule with its parking availability. Therefore, the time-windows must be conditioned to 
the scheduling of off-duty periods at the rest areas. The formulation is as follows: 

 Minimize Total travel time= 𝑥𝑛,𝑎 − 𝑥0,𝑑 (70) 

 Subject to:  

 𝑥𝑖,𝑑 + 𝑑𝑖,𝑖+1 = 𝑥𝑖+1,𝑎, ∀0 ≤ 𝑖 ≤ 𝑛 − 1 (71) 

 𝑥𝑖,𝑎 +∑𝑡𝑟
𝑟∈𝑅

𝑧𝑖,𝑟 ≤ 𝑥𝑖,𝑑, ∀1 ≤ 𝑖 ≤ 𝑛 (72) 

 𝑥𝑖,𝑑 ≤ 𝑥𝑖,𝑎 + (1 − 𝑦0,τ)𝑡ℎ𝑜𝑟 , ∀1 ≤ 𝑖 ≤ 𝑛 (73) 

 

𝑦𝑖,0 +∑𝑦𝑖,τ

𝑇𝑖

τ=1

= 1, ∀1 ≤ 𝑖 ≤ 𝑛 

(74) 

 

∑𝑦𝑖,τ

𝑇𝑖

τ=1

=∑𝑧𝑖,𝑟
𝑟∈𝑅

, ∀1 ≤ 𝑖 ≤ 𝑛 − 1 

(75) 

 

∑𝑦𝑖,τ

𝑇𝑖

τ=1

𝑡𝑖,τ
𝑚𝑖𝑛 ≤ 𝑥𝑖,𝑎, ∀1 ≤ 𝑖 ≤ 𝑛 

(76) 

 

𝑥𝑖,𝑎 ≤ 𝑡ℎ𝑜𝑟 −∑[𝑦𝑖,τ(𝑡ℎ𝑜𝑟 − 𝑡𝑖,τ
𝑚𝑎𝑥)]

𝑇𝑖

τ=1

, ∀1 ≤ 𝑖 ≤ 𝑛 

(77) 

 
𝑥𝑘,𝑎 − 𝑥𝑖,𝑑 ≤ 𝑡𝑐 + 𝑡ℎ𝑜𝑟 ∑ ∑ 𝑧𝑗,𝑟

𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑖+1

, ∀0 ≤ 𝑖 < 𝑘 ≤ 𝑛, 𝑐 ∈ 𝐶1 
(78) 

 
∑𝑑𝑗,𝑗+1

𝑘−1

𝑗=𝑖

≤ 𝑡𝑐 + 𝑡ℎ𝑜𝑟 ∑ ∑ 𝑧𝑗,𝑟
𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑖+1

, ∀0 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛, 𝑐 ∈ 𝐶2 
(79) 

 𝑥𝑖 ∈ [0, 𝑡ℎ𝑜𝑟]
2, 𝑦𝑖 ∈ {0,1}

𝑇𝑖+1, 𝑧𝑖 ∈ {0,1}
|𝑅|, ∀1 ≤ 𝑖 ≤ 𝑛 (80) 

 𝑥0,𝑑 ∈ [0, 𝑡𝑑𝑒𝑝], 𝑦𝑛,0 = 0 (81) 

The objective function (70) is set to minimize the total trip duration. Constraint (71) guarantees 
that the arrival time equals the departure time of the previous location plus the driving time. 
Constraint (72) states that the vehicle must not depart before the arrival time plus the 
minimum rest time decided for that location. Constraint (73) controls what happens when the 
driver does not stop at a certain location. If the vehicle does not stop at location 𝑖, the arrival 
time equals the departure time. This constraint works with constraints (72), (74) and (75) to 
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assure this. Equality will hold when 𝑦𝑖,0 = 1. If 𝑦𝑖,0 = 0, then constraint (73) is always true as 

𝑡ℎ𝑜𝑟 is large. Constraint (74) states that at any location, either exactly 1 time-window is used or 
the vehicle does not stop. Constraint (75) states that the driver only stops if an off-duty period 
is scheduled. Constraints (76) and (77) check the time-windows. Arrival must happen after the 
beginning and before the end of the chosen time window. Constraint (78) checks that the time 
elapsed since the last rest in 𝑅𝑐, 𝑐 ∈ 𝐶1 is less than 𝑡𝑐. Constraint (79) checks if the accumulated 
driving time between rest periods in 𝑅𝑐 , 𝑐 ∈ 𝐶2 is less than 𝑡𝑐. Constraint (80) sets the variables’ 
domains, and (81) guarantees that the departure time from the origin is within the required 
period and that the vehicle will stop at the destination. 

Weekly Constraints 

Some authors limit the planning horizon to less than a week and model the weekly constraint 

as an accumulated driving time constraint over the whole trip (Koç et al. 2016) or between 

2 consecutive weekly rests (Asvin Goel 2012). The formulation in (Koç et al. 2016) is unable 

to deal with trips requiring on-duty time above the weekly limit. Without the planning 

horizon assumption, the model in (Asvin Goel 2012) loses its guarantee of optimality due to 

not considering the different structure of the USA regulation, but still guarantees a valid 

schedule. In this model, the weekly constraint cw can be defined as a constraint of the set C2 

as follows: cw ∈ C2, tcw = 60, Rcw = {weekly rest}. We will refer to this formulation as Simplified 

model. 

In the USA, this weekly constraint is defined as a 7-day rolling time-window in which the driver 

cannot drive after working for 60 hours. This restriction can be modeled as: 

 λ𝑖,𝑐(𝑡) = 𝑅(𝑡 − 𝑥𝑖,𝑑) − 𝑅(𝑡 − 𝑥𝑖+1,𝑎) − 𝑅(𝑡 − 𝑥𝑖,𝑑 − δ𝑐)

+ 𝑅(𝑡 − 𝑥𝑖+1,𝑎 − δ𝑐),                            ∀0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑐 ∈ 𝐶3 

(82) 

 
λ𝑐(𝑡) = ∑λ𝑖,𝑐(𝑡)

𝑛−1

𝑖=0

,  ∀𝑐 ∈ 𝐶3 
(83) 

 λ𝑐(𝑡) ≤ 𝑡𝑐 ∀𝑡 ∈ {𝑥1,𝑎, 𝑥2,𝑎, … , 𝑥𝑛,𝑎},  𝑐 ∈ 𝐶3 (84) 

where 𝑅(𝑡) is the unit ramp function. 𝜆𝑖,𝑐(𝑡) represents the accumulated driving time 
generated by the displacement between locations 𝑖 and 𝑖 + 1 at time 𝑡, and 𝜆𝑐(𝑡) represents 
the accumulated driving time over the last 𝛿𝑐 hours at time 𝑡, both relative to constraint 𝑐 ∈ 𝐶3. 
It is sufficient to check these constraints at the arrival times 𝑥𝑖 , 𝑎. If the constraints are broken 
anywhere they will also be broken at the arrival time that follows. 

MIP formulation 

The accumulated driving time over the last 𝛿𝑐 hours, 𝜆𝑐(𝑡), needs to be evaluated at all arrival 
times 𝑥𝑗,𝑎, so each of its component functions 𝜆𝑖,𝑐(𝑡) must also be evaluated at these times. 

Constraints were defined for each evaluated time using the method for writing piecewise linear 
functions in MIP models described in (Schoomer 1964). The domains of the functions 𝜆𝑖,𝑐(𝑡) are 
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divided in sections according to when the slope of the function changes and auxiliary variables 
are used to write 𝑡 according to where it is located relative to the sections’ boundaries. For 

each function and evaluation time 𝜆𝑖(𝑥𝑗,𝑎), the sets of variables {𝛼𝑖,𝑗,𝑝}, {𝛽𝑖,𝑗,𝑞}, and {𝜆𝑖,𝑗} are 

defined as follows: 

 𝛼𝑖,𝑗,𝑝,𝑐 ∈ 0,1, 𝛽𝑖,𝑗,𝑞,𝑐 ∈ [0,1]  ∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛,  0 ≤ 𝑝 ≤ 4,  1 ≤ 𝑞 ≤ 5,  𝑐 ∈ 𝐶3 (85) 

 1 ≥ 𝛼𝑖,𝑗,0,𝑐 ≥ 𝛽𝑖,𝑗,1,𝑐 ≥ 𝛼𝑖,𝑗,1,𝑐 ≥ ⋯ ≥ 𝛼𝑖,𝑗,4,𝑐 ≥ 𝛽𝑖,𝑗,5,𝑐,  ∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑐 ∈ 𝐶3 (86) 

 𝛼𝑖,𝑗,𝑝,𝑐 < 𝛽𝑖,𝑗,𝑝+1,𝑐 + 1,                                           ∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛, 𝑐 ∈ 𝐶3 (87) 

 𝑥𝑗,𝑎 = 𝑥𝑖,𝑑𝛽𝑖,𝑗,1,𝑐 + 𝑑𝑖,𝑖+1𝛽𝑖,𝑗,2,𝑐 + (𝛿𝑐 − 𝑑𝑖,𝑖+1)𝛽𝑖,𝑗,3,𝑐 + 𝑑𝑖,𝑖+1𝛽𝑖,𝑗,4,𝑐
+ 𝑡ℎ𝑜𝑟𝛽𝑖,𝑗,5,𝑐,                                            ∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛,  𝑐 ∈ 𝐶3 

(88) 

 𝜆𝑖,𝑗 = 𝑑𝑖,𝑖+1𝛽𝑖,𝑗,2 − 𝑑𝑖,𝑖+1𝛽𝑖,𝑗,4,                        ∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛 (89) 

 

∑𝜆𝑖,𝑗

𝑗−1

𝑖=0

≤ 𝑡𝑐,                                                                   ∀1 ≤ 𝑗 ≤ 𝑛,  𝑐 ∈ 𝐶3 (90) 

where 𝜆𝑖,𝑗 = 𝜆𝑖(𝑥𝑗,𝑎). The 𝛼’s and 𝛽’s are auxiliary variables used to model the piecewise 

definition of 𝜆𝑖,𝑐(𝑡). The 𝛼’s determine in which section of the function domain 𝑡 is, and the 𝛽’s 
define its exact position within the section, the indexes 𝑝 and 𝑞 represent the sections. 
Constraints (85), (86) and (87) imply that, for a section 𝑞, whenever 0 < 𝛽∗,𝑞 < 1, then 𝛽∗,𝑞− =

1, 𝛼∗,𝑞− = 1, ∀𝑞
− < 𝑞, and 𝛽∗,𝑞+ = 0, 𝛼∗,𝑝 = 0, ∀𝑞

+ > 𝑞, 𝑝 ≥ 𝑞. Constraint (88) writes the 

time instant to be evaluated, 𝑥𝑗,𝑎, as a function of the 𝛼’s and 𝛽’s. Constraint (89) uses the 𝛽’s 

to calculate 𝜆𝑖(𝑥𝑗,𝑎), and constraint (90) calculates, and limits, the accumulated driving time 

over the moving time-window relative to regulation 𝑐 ∈ 𝐶3. This set of constraints substitutes 
constraints (82), (83) and (84), and guarantees that the accumulated driving time in any period 
of 𝛿𝑐 consecutive hours is kept below 𝑡𝑐. Due to (88) this problem would be a quadratically 
constrained problem. However, as (88) only considers 𝑗 > 𝑖, the variables 𝛼𝑖,𝑗,𝑝,𝑐 for 𝑝 < 2 and 

𝛽𝑖,𝑗,𝑞,𝑐 for 𝑞 < 3 will be always 1 and can be defined as constants. This model still does not 

include the possibility of using weekly rests to reset the constraint, so it will be referred to as No 
Reset model. 

Reset for weekly constraint 

According to USA’s regulation, a driver may restart the 168 consecutive hours (7 days) period, 
by taking an weekly rest. When this weekly rest is taken the system should be able to set the 
weekly accumulated driving time at the end of that rest to zero and start counting again from 
there. This was implemented using indicator constraints controlled by the variables 𝑧𝑖,𝑟. A set of 
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variables {𝜓𝑖,𝑗} was created to represent the accumulated driving time generated by all trips 

starting at locations {0, … , 𝑖} measured at time 𝑥𝑗 , 𝑎. The formulation is as follows: 

 

𝜓𝑖,𝑗 =

{
 
 

 
 𝜓𝑖−1,𝑗 + 𝜆𝑖,𝑗 if ∑ 𝑧𝑖,𝑟

𝑟∈𝑅𝑐

= 0

𝜆𝑖,𝑗 if ∑ 𝑧𝑖,𝑟
𝑟∈𝑅𝑐

= 1
∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛,  𝑐 ∈ 𝐶3 (91) 

 𝜓0,𝑗 = 𝜆0,𝑗,  ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (92) 

 𝜓𝑗−1,𝑗 ≤ 𝑡𝑐, ∀1 ≤ 𝑗 ≤ 𝑛,  𝑐 ∈ 𝐶3 (93) 

where constraint (91) defines 𝜓𝑖,𝑗 and sets to zero all contributions from nodes before location 

𝑖 when an appropriate rest is taken at location 𝑖. This model assumes that all constraints’ 
counters are reset before departure, so (92) sets the initial accumulated driving time to zero. 
These 3 constraints replace constraint (90). In the regulation considered, only weekly rests can 
be used to reset this constraint, so |𝑅𝑐| = 1 for 𝑐 ∈ 𝐶3. In this case the conditions turn into 
𝑧𝑖,𝑟 = 1 and 𝑧𝑖,𝑟 = 0. This model will be referred to as Reset model. 

Experiments 

Parking Availability Impact 

This section describes the experiment used to test the impact of considering availability 
windows for every parking lot along a truck route. A model without the parking availability 
constraints was used as baseline for comparison. A route, approximately 1960Km long, going 
from San Diego to Seattle using the I-5 highway was chosen. Data from the FHWA (U.S. 
Department Of Transportation 2013) was used to find rest areas and truck stops located close 
to the route and position them along the route; 94 truck stops and rest areas were considered. 
Figure 107 shows the parking lots along the route (gray circles), as well as the chosen parking 
locations for the base case (triangles and squares) and for one of the tested scenarios (crosses). 

This trip requires less than 60 hours of on-duty time, so the rolling time-window constraints are 
not needed. In order to simulate parking availability, time windows with start and end times 
normally distributed were considered for each rest area/truck stop. The distribution used for 
the start times had mean 5 hours (5am) and standard deviation of 0.5 hours, and the one for 
the end time had mean 20 hours (8pm) and standard deviation of 1 hour. For this experiment, a 
100 scenarios with different parking availability time-windows were generated. It was 
considered that the final destination has daily time-windows from 8am to 6pm. The day was 
divided in 8 3-hours long intervals, and these intervals were used as departure constraints. Both 
models were solved for each pair of departure constraints and scenario using the solver CPLEX. 

This experiment compared the feasibility and the average trip duration of solutions generated 
by the two models. As the scenarios do not affect the baseline model, only one solution was 
generated for each departure interval, the solution’s feasibility was then evaluated in each of 
the 100 scenarios. Our model generates different solutions for each scenario, so the average 
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cost was used for comparison. Our model includes additional constraints in the problem, and 
does not relax the existing ones. Consequently, it is impossible for our model to reduce the 
optimal cost (trip duration). The advantage of our model lies in the practical feasibility of its 
solutions. As can be seen on Figure 108, the schedules generated without considering parking 
are often infeasible, meaning that they scheduled rest stops at locations without available 
parking. Even if rules of thumb were used to choose departure constraints that improve 
feasibility, such measures can have a significant impact on the total duration/cost of the trip, as 
seen on Figure 109. When the departure was restricted to earlier times the feasibility improved, 
however the cost deteriorated. Figure 109 also shows that the average cost of our model’s 
solution is not significantly higher than the baseline model. Therefore, our model is able to 
guarantee the feasibility of its schedules with only a small impact to the cost. In fact, in this 
experiment, if we do not restrict the departure time, the average cost of our solutions is 
practically equal to the optimum cost of the baseline model. 

It is also important to note that these costs for the baseline model were generated as if the 
driver did not incur any penalty for not finding parking. In practice the driver would have to 
either keep driving looking for parking or park illegally somewhere nearby. In the first case, the 
search time itself would already increase the trip duration, and it might cause other changes in 
the rest of the schedule, further increasing the cost. In the second case, the driver is subject to 
the possibility of being fined and to higher safety risks. The estimation of the extra costs 
incurred by infeasible schedules, in particular the second case, is non-trivial and was not 
treated in this paper. 
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Figure 107. Route used on short trip experiment. San Diego to Seattle through the I-5 
freeway. The triangles (base model) and +s (new model) represent truck stops chosen for 
daily rests, and the square (base model) and × (new model) represent the ones chosen for 
short breaks. The gray circles represent the truck stops near the chosen route. 
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Figure 108. Feasibility rate of the schedules generated without considering the parking 
constraints. The feasibility rate of schedules that consider parking constraints is always 100%, 
so it was omitted. 

 

Figure 109. Average trip duration of schedules generated with and without parking 
constraints. 

Long Trips 

In order to test the long trip models, a route was generated with equally spaced truck stops, the 
travel time between two adjacent truck stops was set to 1 hour. Like in the previous 
experiment, normal distributions were used to generate time-windows for each truck stop. The 
distribution used for the start times had mean 4 hours (4am) and standard deviation of 1 hour, 
and the one for the end time had mean 21 hours (9pm) and standard deviation of 2 hours. It 
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was considered that the truck must depart from the origin during the first 24 hours and that the 
final destination has daily time-windows from 8am to 6pm. 

This experiment tested the performance of the 3 models, Reset, No Reset, and Simplified, which 
were presented on section Model. 

Performance It can be seen on Figure 110 that when the reset option is not implemented the 
total trip duration automatically increases to more than 1 week when the needed driving time 
is larger than the weekly limit. When the reset is implemented the trip duration only increases 
by the duration of the weekly rest needed to reset the counter. This is the reason why the 
Simplified model is likely to find an optimal schedule for the USA regulations. In general, it is 
more efficient for the drivers to take the 34 hours rest and reset the counter than to reduce 
their average daily driving hours to match the rolling time-window. However, this is not 
necessarily true for every scenario. In a scenario with more restrictive time constraints, the 
need to extend offduty periods beyond the minimum required in order to meet said constraints 
would lower the average daily driving hours, making weekly rests not as advantageous. Figure 
65 also shows, as ‘TW Bound’, the lower bound for solutions that need the rolling time-window 
to be found, i.e., solutions that assign at least 1 period longer than 168 hours without a weekly 
rest and with more than 60 hours of driving time. This lower bound was obtained by solving this 
problem without restricting the parking locations, but forcing the solution to have at least 1 
interval with more than 60 hours of driving without a weekly rest. As this bound is dependent 
only on the HOS regulation and the total driving time, it can be calculated off-line to be used for 
comparison when needed. The solution generated by the Simplified model has the minimum 
cost among the subset of solutions that do not use the rolling time-window constraint. 
Therefore, if its cost is smaller than the lower bound of the cost of solutions that use the rolling 
time-window constraint, we can guarantee that this solution is optimal. For the tested 
scenarios, the results for the Simplified model were optimal and significantly lower than the 
bound. For schedules that exceed this bound we can only show what is the maximum possible 
improvement to the solution if the Reset model were used, and use this information to decide 
whether to accept the current solution or try to improve it by using the Reset model. 

Complexity Figure 111 shows that the average solve times for all 3 models are almost the 
same when the number of locations used is smaller than 61. Due to fixed spacing between 
locations used in the experiment, at 61 locations the total driving time reaches the weekly 
driving limit (60h) and the weekly constraints start being needed. The solve times for the Reset 
model rises sharply after that threshold. The solve times for the other models also increase, but 
at a slower rate. Although the Reset and No Reset models have a similar number of constraints 
and variables, the indicator constraints make the Reset model’s solve time increase significantly 
faster. Unexpectedly, even though the Simplified model has a notably smaller number of 
variables and constraints, the variation of its solve time was very inconsistent and did not show 
a significant improvement compared to the No Reset model. Nevertheless, its solve time is still 
shorter than the Reset model while finding solutions of same or similar costs, which are 
significantly better than the No Reset solutions. The oscillations seen in the solve time plot of 
Figure 111 show that the problem is significantly harder to solve in certain scenarios. This is 
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most likely caused by how the rest areas spacing and total driving time match with the 
regulations. We believe that the solve time is very sensitive to the configuration of the rest 
areas, and that those oscillations will change for other configurations and regulations. 

 

Figure 110. Average trip duration of schedules calculated by the 3 methods with varying total 
driving time, and the lower bound of solutions that use the rolling time-window. The vertical 
dotted line marks the on-duty time weekly limit (60h) and the horizontal dotted line 
represents a trip duration of 1 week (168h). 

 

Figure 111. Solve time of the 3 presented methods, with varying number of locations and 
total travel distance. 

Conclusion 

In this study, a MIP model for the TDSP with parking availability was presented and extended to 
include the weekly constraints of the USA regulation. Moreover, the effects of the inclusion of 
parking availability and weekly working hours constraints to the performance and complexity of 
the model were studied. 
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The experiments showed that by including parking availability constraints, our model 
guarantees the practical feasibility of the schedules with minimal impact on the cost for the 
driver/company, whereas the practical feasibility of other models’ solutions is compromised by 
the risk of not finding parking. However, using only the simplified weekly constraint was found 
to be more advantageous compared to using the complete constraint due to scalability issues, 
except when the driver is expected to consistently drive less than the allowed daily limit. 

To the extent of our knowledge, this was the first work to consider the time-dependent 
parkingavailability of the rest areas and the rolling time window nature of the USA HOS 
regulation for long trips in the TDSP. As long as data is available, this model could be used by 
drivers to better plan their schedules, both off-line and during the trip whenever new data 
came in. In future work, it would be interesting to consider the impact of each truck’s schedule 
on the parking availability and optimize schedules for large fleets. Another topic which was not 
treated and can also be pursued as future work is accounting for the uncertainty in parking 
availability.  
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Shortest Path and Truck Driver Scheduling Problem 

Section based on the publication: 

F. Vital and P. Ioannou, “Scheduling and Shortest Path for Trucks with Working Hours and 
Parking Availability Constraints,” Transportation Research Part B: Methodological 148 (2021): 1-
37, doi:10.1016/j.trb.2021.04.002 

Introduction 

In 2015, a survey by the Federal Highway Administration identified truck parking shortages in 
36 US states, with more pronounced issues along major trade corridors (U.S. Department of 
Transportation 2015). The lack of truck parking can have significant impact on road safety, 
industry costs, and the environment (Rodier et al. 2010; Sochor and Mbiydzenyuy 2013), and 
ranked among the trucking industry’s top concerns in recent surveys by the American 
Transportation Research Institute (ATRI) (American Transportation Research Institute 2019). 

Due to the Hours-of-Service (HOS) regulations, truck drivers are required to take regular breaks. 
These rules aim to ensure that drivers take adequate rest and avoid fatigue-related accidents. 
However, when appropriate parking is scarce, drivers may find themselves having to choose 
between driving beyond the legal limits or parking in unauthorized and often unsafe locations, 
such as highway shoulders and freeway ramps. In recent surveys, most drivers reported using 
unauthorized parking locations at least once a week (Boris and Brewster 2018; U.S. Department 
of Transportation 2015; Rodier et al. 2010; Martin and Shaheen 2013)]. As truck crashes can be 
very costly (Zaloshnja and Miller 2007; Hagemann et al. 2013), such practices may lead to 
significant losses for the trucking industry due to potential accidents. According to a study by 
the Virginia Department of Transportation, 25% of all truck-related crashes along Virginia’s 
major corridors occurred on entrance and exit ramps (Kimley Horn 2015). Although the data is 
not specific to parked trucks, it shows that parking on ramps poses a significant safety risk. 
Truck insurance premiums have increased in recent years and represented 5% of the average 
marginal operational cost of trucking (not including workers compensation costs/insurance, 
physical damage, jury awards, and out-of-court settlements) in 2019 (Murray and Glidewell 
2019). This is in part due to recent increases in workers compensation claims, settlements, and 
jury awards, which at times can surpass $10 million (Lysiak 2019). These growing financial risks 
push trucking companies to reevaluate safety and how much risk they are willing to take. 

Truck parking shortage costs go beyond safety-related ones (Sochor and Mbiydzenyuy 2013; 
Boris and Brewster 2018). Surveys report that drivers often spend more than 30 minutes 
looking for parking (American Transportation Research Institute 2018; NCDOT 2017). Although 
a survey by ATRI (Boris and Brewster 2018) reported that most surveyed drivers spent less than 
15 minutes looking for parking, the drivers had, on average, parked one hour earlier than 
required by the regulation, which also contributes to decreasing their daily revenue-earning 
miles. Stopping for rest early or spending a long time looking for parking is inefficient use of 
driver’s time. As most truck drivers are not paid by the hour, this can have a significant impact 
on their compensation (Boris and Brewster 2018). Spending long times looking for parking also 
means higher fuel consumption, increasing both costs and emissions. Besides, as drivers often 
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idle the truck’s engine to power their appliances, when trucks end up parking near residential 
areas, the emissions generated can significantly affect the region’s air quality (Palaniappan, Wu, 
and Kohleriter 2003). 

An important aspect of truck parking availability is its time dependence. Although drivers often 
report difficulties finding parking and truck stops report operating overcapacity, they usually 
refer to the period between 7 PM and 5 AM when drivers are looking for overnight parking 
(U.S. Department of Transportation 2015; NCDOT 2017; Boris and Brewster 2018; Martin and 
Shaheen 2013). This suggests that it may be possible to mitigate the truck parking shortage by 
encouraging drivers to plan their stops on off-peak periods, thus balancing the demand. 
Balancing the demand with respect to space may also be an option. Several factors influence 
drivers’ choice of parking location; however, lack of information can lead drivers to park illegally 
even when there are facilities with available parking nearby (Rodier et al. 2010). In (U.S. 
Department of Transportation 2015), less than 50% of truck stops reported working 
overcapacity. Many of the facilities operating under capacity may be in regions with low parking 
demand, yet, some may be in high-demand areas and are underutilized because drivers do not 
know they are viable options. With this in mind, it is worth considering to include parking 
availability earlier in the planning process. Instead of only providing drivers information on 
facilities along their path to allow for on-trip decisions, if parking information is considered 
when choosing the path itself, the existing parking capacity could be better utilized. Depending 
on the situation, it may be advantageous for the driver to take a longer route if that can 
guarantee available parking. This suggestion of addressing parking issues at the supply chain 
level has been brought up before in (Boris and Brewster 2018; Phelan et al. 2016; de Almeida 
Araujo Vital, Ioannou, and Gupta 2020); however, literature on the topic is still scarce. 

Although planning methods that account for HOS rules, the truck driver scheduling problem 
(TDSP), have been extensively studied in the truck scheduling literature (Archetti and 
Savelsbergh 2009; A. Goel 2010; Drexl and Prescott-Gagnon 2010; Asvin Goel and Kok 2012; 
Asvin Goel 2012; Koç et al. 2016; Vital and Ioannou 2019), the issue of truck parking availability 
being time-dependent was only considered by Vital and Ioannou in (Vital and Ioannou 2019). 
The usual assumptions are that any valid parking location is available 24/7, and that drivers can 
arrive at client locations as early as needed and wait until their delivery time-window. Given the 
truck parking shortage in many States, we believe that such assumptions can lead drivers to 
locations that are unable to accommodate them at their arrival time. Therefore, as in (Vital and 
Ioannou 2019), we consider that parking is restricted in both time (only within certain time-
windows) and space (only at rest areas), and that early arrivals at client locations are not 
allowed. However, (Vital and Ioannou 2019) studied a scheduling problem where the path to be 
taken is given, whereas, in this project, we address a more general version of the problem 
where the path taken must also be optimized. While HOS rules have been studied in the 
context of shortest path problems in (Asvin Goel and Irnich 2017; Drexl and Prescott-Gagnon 
2010; Mayerle et al. 2020), these works do not account for parking availability information. The 
methods presented by Goel and Irnich (Asvin Goel and Irnich 2017), and by Drexl and Prescott-
Gagnon (Drexl and Prescott-Gagnon 2010), consider that drivers may rest anywhere along the 
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path, whereas a recent study by Mayerle et al. (Mayerle et al. 2020) restricts parking to 
appropriate facilities but does not account for the parking shortage. 

HOS-compliant schedules, efficient path choices and safe parking conditions (time and location) 
are all important aspects of planning for long-haul trucking. Although these topics have been 
studied separately, work combining two of them is very limited (i.e., HOS rules and parking 
availability in (Vital and Ioannou 2019), and HOS rules and path planning in (Mayerle et al. 
2020), and the intersection of all three topics has yet to be investigated. Our purpose is to study 
the interaction between HOS-compliant scheduling, path planning and time-dependent parking 
availability, and the importance of considering all three when facing truck parking shortages. 

Scientific contributions and structure 

In this study, we focus on the issue of integrating time-dependent parking availability 
information into long-haul truck planning (path and schedule). The main contributions of the 
study are the following: First, we introduce the shortest path and truck driver scheduling 
problem with parking availability constraints (SPTDSP-PA). The SPTDSP-PA extends the Truck 
Driver Scheduling Problem (TDSP) by adding a parking availability and a path optimization 
component. Each parking facility in the road network has a set of parking availability time-
windows that restrict when drivers can park. Multiple paths may exist between two consecutive 
clients, each one with its own set of parking facilities. Second, we propose a resource-
constrained shortest path formulation for the SPTDSP-PA along with a tailored label-correcting 
algorithm used to find an optimal solution. Third, we analyze the impact that parking 
constraints have on trip duration and compare it to estimated potential costs of disregarding 
parking during planning. 

The truck parking shortage has been recognized as a safety concern by the USA (U.S. 
Department of Transportation 2015) and the European Union (Weenen et al. 2019). In addition, 
estimates point to a substantial impact in the economy (Weenen et al. 2019; Sochor and 
Mbiydzenyuy 2013; Hernández and Anderson 2017). Nevertheless, research on freight planning 
accounting for parking availability remains very limited. The same is true for ways to estimate 
how parking availability relates to trip duration, costs, and illegal parking. Our study provides a 
tool for policymakers to estimate how the current truck parking infrastructure affects truck 
drivers’ ability to safely comply with the HOS regulations. The ability to estimate the average 
cost of following a safe schedule at different parking availability levels can be used to support 
decisions on parking infrastructure spending. From the industry’s standpoint, our model allows 
drivers and companies to improve their operations’ safety standards and estimate their costs 
more accurately. 

This study is organized as follows: Section Literature Review reviews the relevant literature. 
Section USA’s Hours of Service Regulations describes the HOS regulations. Section Problem 
Description presents the problem addressed. Section Model describes the proposed 
formulation. Section Label-Correcting Method describes the label-correcting algorithm used. 
Section Case Study presents a case-study used to evaluate the impact of the proposed method. 
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Section Randomized Networks Experiments presents the experiments used to measure the 
algorithms performance. Section Conclusion presents the conclusion. 

Literature Review 

The inclusion of HOS rules in scheduling algorithms, the truck driver scheduling problem (TDSP), 
was approached in many studies in recent years (Archetti and Savelsbergh 2009; A. Goel 2010; 
Asvin Goel and Kok 2012; Asvin Goel 2012; Koç et al. 2016; Vital and Ioannou 2019). Multiple 
regulations have been considered, including ones from the United States (Asvin Goel and Kok 
2012), Europe (A. Goel 2010) and Canada (Asvin Goel and Rousseau 2011). Furthermore, it is 
often studied as part of a vehicle routing and truck driver scheduling problem (VRTDSP) (Kok, 
Hans, et al. 2010; Kok, Hans, and Schutten 2011; Rancourt, Cordeau, and Laporte 2013; Asvin 
Goel and Vidal 2014; Gaddy, Hernandez, and Nurre 2018; Koç, Jabali, and Laporte 2018), which 
is a variant of the vehicle routing problem (VRP) that accounts for HOS rules, and, less 
commonly, it is studied in the context of shortest path problems (SPP) (Drexl and Prescott-
Gagnon 2010; Asvin Goel and Irnich 2017; Mayerle et al. 2020). Besides the particular methods 
used, the differences between problems treated in the literature usually relate to the following 
aspects: regulation considered, optimality of the solutions, parking restrictions, cost function, 
and main problem (TDSP, VRP or SPP). We are most interested in how they approached parking 
restrictions and path planning. 

Parking restrictions 

Although truck parking is currently a critical issue, it is often overlooked in the literature, with 
many methods not even restricting parking to appropriate facilities. In (Archetti and 
Savelsbergh 2009), Archetti et al. considered the problem of determining whether a sequence 
of 𝑛 full truckload transportation requests is feasible given a set of HOS regulations and pick-up 
time-windows. The proposed method allows drivers to park anywhere and finds a feasible 
schedule in 𝑂(𝑛3) time. In (A. Goel 2010), Goel considered a similar problem using the 
European regulations, and in (Asvin Goel and Kok 2012), presented an algorithm to find feasible 
schedules to visit 𝑛 locations using the US regulations in 𝑂(𝑛2) time. However, these methods 
assumed that drivers could park anywhere, which is not valid in practice. This assumption is 
also present in (Kok, Meyer, et al. 2010; Drexl and Prescott-Gagnon 2010; Rancourt, Cordeau, 
and Laporte 2013; Asvin Goel and Vidal 2014; Asvin Goel and Irnich 2017). In (Asvin Goel 2012), 
Goel presented a mixed integer programming (MIP) formulation and a dynamic programming 
algorithm for the TDSP that restricts parking to client locations and calculates a schedule with 
minimum trip duration. Rest areas were modeled as clients with zero service time and 
unbounded time-windows. Similar MIP models were used in (Kok, Hans, and Schutten 2011; 
Koç et al. 2016; Vital and Ioannou 2019), focusing on different aspects of the problem but 
keeping parking restricted to appropriate facilities. In (Kok, Hans, and Schutten 2011), Kok et 
al. addressed the issue of traffic congestion by considering time-dependent travel times and 
proposed a heuristic approach to integrate the TDSP model into a VRP method. In (Koç et al. 
2016), Koç et al. approached the environmental impact caused by truck idling and how it is 
affected by the truck’s equipment and rest areas’ infrastructure. The drivers can only park at 
rest areas, which have different types of infrastructure available. Early arrival is allowed at 
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client locations, but it does not count as off-duty time. The cost function accounts for the type 
of idling used in each stop given the equipment installed on the truck and the infrastructure 
available at each rest area. This method was later used as a base for a VRTDSP algorithm with 
the same focus (Koç, Jabali, and Laporte 2018). In (Vital and Ioannou 2019), Vital and Ioannou 
approached the issue of truck parking availability and US HOS rules for long trips. Their model 
considered a single client trip, which hinders drivers’ ability to plan consecutive trips. Parking 
was restricted to rest areas, and parking availability was modeled as time-window constraints 
for each rest area. Each rest area’s availability time-windows take effect only if a stop is 
scheduled for that particular location. Due to the focus on parking availability issues, the model 
assumed that parking is unavailable outside of the delivery time-window and did not allow early 
arrival at the client or rest areas. As short-term staging due to warehouse or terminal hours is a 
source of truck parking demand (U.S. Department of Transportation 2015; Cambridge 
Systematics 2019), we see the restriction on early arrivals (also included in our model) as an 
important distinction when considering truck parking shortages. This study is the only one that 
considered time-dependent parking availability in the TDSP. Nevertheless, as (Vital and Ioannou 
2019) addresses only the scheduling problem, it does not account for alternative paths or 
parking locations that require a detour to be reached. This limitation motivates the other 
aspect of our work: path planning. 

Path planning 

The inclusion of parking constraints and HOS regulations when determining the shortest path 
between locations is relevant not only to individual drivers that need to plan their itineraries, 
but also to carriers and other stakeholders that need to estimate operational costs and allocate 
resources. Hence why we are interested in the shortest path problem with resource constraints 
(SPPRC) that lies between the TDSP and the VRTDSP. VRTDSP methods assume that the shortest 
path between any two clients is known (and independent of the current status of the HOS 
constraints), and use TSDP algorithms to calculate the cost of each route generated. The rest 
areas considered in these problems are located along these known shortest paths. If the driver 
is allowed to rest anywhere or only at client locations, this assumption does not affect the route 
cost. However, when parking is restricted and rest areas are considered, the minimum cost 
path between two clients will depend on the location of every reachable rest area and the HOS 
constraints’ status at the departure time from the client. The inclusion of parking availability 
constraints makes it even more important to consider alternative paths and rest areas. When 
parking is scarce at the usual routes, it may be cost-effective to take a slightly longer path if it 
has better parking conditions. Failing to consider how parking availability and HOS constraints 
affect the shortest path between clients may cause planners to underestimate the trip’s 
duration and cost. This inaccuracy can upset operations planning as well as fair driver 
remuneration (depending on how wages are determined). The issue is aggravated when drivers 
lack the flexibility to adjust their route, as some of the drivers surveyed in (Sun et al. 2013). In 
this case, the driver is limited to taking a sub-optimal route, further increasing the difference 
between estimated and actual trip cost and duration. 

The shortest path problem with resource constraints (SPPRC) often appears in column 
generation solutions to the VRP (Costa, Contardo, and Desaulniers 2019) and several 
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approaches have been proposed for its variants (Asvin Goel and Irnich 2017; Pugliese and 
Guerriero 2013; Lozano, Duque, and Medaglia 2016; Horváth and Kis 2016; Irnich and 
Desaulniers 2005). The SPPRC is often solved through dynamic programming-based labeling 
algorithms, applying tailored dominance rules and bound estimates to identify and discard 
inferior paths. SPPRC formulations and algorithms are tailored to their own problem variants 
and may not be directly applicable to other problems. Hence the need to develop tailored 
methods for the SPPRC in the context of HOS regulations and parking availability constraints. 
However, the number of studies using SPPRC formulations in the context of HOS-compliant 
planning is very limited. In (Drexl and Prescott-Gagnon 2010), Drexl and Prescott-Gagnon 
present a SPPRC formulation to the problem of finding HOS-compliant routes and schedules, 
and propose exact and heuristic labeling algorithms. In (Asvin Goel and Irnich 2017), Goel and 
Irnich propose an exact method for the VRTDSP using a branch and price algorithm where a 
SPPRC is used to generate HOS-compliant routes and their costs. An auxiliary network is used to 
model drivers’ possible activities, but parking locations are not considered. Even though they 
consider HOS regulations, both (Asvin Goel and Irnich 2017) and (Drexl and Prescott-Gagnon 
2010) assume that drivers may stop and rest anywhere on a route. This limitation is partially 
addressed in (Mayerle et al. 2020), where Mayerle et al. study the impact of Brazilian 
regulations in the planning of long-haul full truckload shipments. Differently from (Drexl and 
Prescott-Gagnon 2010; Asvin Goel and Irnich 2017), this study is not aimed at deciding which 
clients to visit and in what order for a VRTDSP, but at how changes to HOS rules affect the best 
path to reach a client. They use a labeling algorithm and pruning heuristics to optimize the path 
a truck takes to reach a single client, while scheduling stops at allowed locations to satisfy 
regulations. Their model includes some time-restrictions to all rest stops by restricting 
departure times at the beginning of each work day, as well as the start time of lunch breaks. 
However, they also overlook the question of whether those parking locations will be available 
at the desired times. In addition, it shares the same single client limitation as (Vital and Ioannou 
2019). 

USA’s Hours of Service Regulations 

The current USA HOS regulation (Code of Federal Regulations, n.d.) differentiates between 
driving time, on-duty time and off-duty time. In summary, driving time is the time spent 
operating the truck, on-duty time is the time from when the driver is required to be ready for 
work until he/she is relieved from work, and off-duty is the time when the driver is not on-duty. 
The time restrictions set by the regulation can be reset by off-duty periods with minimum 
durations specified in the regulation. We refer to off-duty periods lasting at least 0.5, 10, and 34 
consecutive hours, as breaks, daily rests and weekly rests, respectively. Note that the longer off-
duty periods can be used to reset the restrictions related to the shorter ones. The USA HOS 
regulation can be summarized as follows: 

• Daily Driving Time Limit: A driver may drive at most 11 hours between 2 consecutive 
daily rests. 

• 14-Hour Elapsed Time Limit: A driver cannot drive after 14 hours have elapsed since the 
last daily rest ended. 

• Rest Breaks: A driver cannot drive after 8 hours have elapsed since the last break ended. 
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• 60-Hour Limit: A driver cannot drive after having been on duty for 60 hours in any 
period of 7 consecutive days. The 7 days period can be reset by taking a weekly rest. 

Unless the driver expects to be on-duty for less than 8.6 hours per day (60/7) on average, taking 
weekly rests is more efficient than not. Therefore, a simplified version of the 60-Hour Limit was 
considered in this paper. Instead of restricting the on-duty time over any period of 7 
consecutive days, the on-duty time between two consecutive weekly rests was restricted to 60 
hours. This greatly simplifies the implementation of the 60-Hour limit, while still guaranteeing 
regulation compliance. 

Problem Description 

The problem consists of planning a single truck’s minimum cost path and schedule from the 
origin to an ordered set of client locations, while complying with the USA HOS regulations, 
client service time-windows and only scheduling off-duty time at truck parking locations (TPL) 
which are expected to have available parking at the time of arrival. The road network’s travel 
times are fixed and known. Parking availability is modeled as time-windows for each TPL, within 
which the driver is guaranteed to find parking. The parking availability time-windows are 
assumed known. The collection of data and statistical analysis required to generate reasonable 
time-windows is beyond the scope of this study and is not addressed. Some recent work on 
parking prediction can be seen in (Rajabioun and Ioannou 2015; Bayraktar et al. 2015; Sadek, 
Martin, and Shaheen 2018; Monteiro and Ioannou 2018; Morris et al. 2018; Tavafoghi, Poolla, 
and Varaiya 2019). 

An important difference between this study and some of the scheduling papers mentioned 
earlier, such as (Asvin Goel 2012; Koç et al. 2016), is that we do not allow early arrival at nodes 
with time-window constraints. In (Asvin Goel 2012), the driver was allowed to arrive early at a 
client location and wait until the start of the service time-window. This waiting time was 
treated as an off-duty period and, when long enough, could be used to satisfy HOS rest 
requirements. In (Koç et al. 2016), the driver was also allowed to arrive early at a client, 
however, the waiting time is treated as on-duty time and could not be used to satisfy the HOS 
rest requirements. Both studies set unbounded time-windows for TPLs, so early arrivals at 
these facilities were not a concern. In this study, we assume that TPLs and clients can only 
accommodate new vehicle arrivals within the time-windows. Therefore, allowing early arrival 
would be equivalent to telling the driver to stop outside the parking or customer facility and 
wait until it becomes available, which goes against the objective of avoiding stops at 
inappropriate locations. According to (U.S. Department of Transportation 2015; Cambridge 
Systematics 2019), short-term staging due to warehouse or terminal hours is a source of truck 
parking demand. Therefore, we believe that the ability to accommodate drivers whenever they 
arrive should not be taken for granted. If a client allows drivers to arrive early, this should be 
explicitly modeled as a TPL right before the customer location. This TPL should have its own 
time-windows to limit how early the driver may arrive, and possibly include restrictions on the 
duration of stay. 
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The problem is solved over a road network that includes only the main routes the truck can 
take for that specific trip, and the TPLs around them. Trucks have road restrictions due to size 
and weight, so using the full road network would include a lot of superfluous information. In 
addition, the order in which clients must be visited can also be used to narrow down the set of 
relevant paths. The truck route network is generated from the full network by calculating a set 
of paths between every two consecutive clients, then connecting each path to the set of nearby 
TPLs to be considered. The number of paths considered, as well as the relevant TPLs for each 
path, is at the user’s discretion. Appendix M presents a simple heuristic that could be used to 
choose the number of paths and its impact on solution quality and running time. The network is 
defined as an acyclic directed graph 𝐺 = (𝑉, 𝐴), where 𝑉 is the set of nodes of the graph and 𝐴 
is the set of arcs. The nodes represent locations of interest in the road network, as TPLs, client 
locations, intersections, and road branching spots. The arcs represent road sections, and each 
(𝑖, 𝑗) ∈ 𝐴 is assigned a fixed travel time 𝑑𝑖𝑗, and length 𝑙𝑖𝑗. Figure 112 shows an example 

network, the nodes with a number index are road nodes and the ones with a letter index are 
TPLs. The edges connected to TPLs are represented as dashed arrows and the main paths as 
continuous arrows. 

 

Figure 112. Example of simplified road network. The nodes with a number index are road 
nodes (intersections, branching or merging spots) and the ones with a letter index are TPLs. 

Model 

The SPTDSP-PA is modeled as a resource-constrained shortest path problem (Irnich and 
Desaulniers 2005), where the time, cost, and counters for the different HOS regulations are 
treated as resources. This section presents the extended network and system dynamics used to 
model the problem presented in the section Problem Description. 

Extended Network 

The network introduced in the section Problem Description describes the road sections and 
locations considered in the problem, but it does not portray the activities that take place at 
each location. In order to represent the different activities and decisions involved in the 
problem, we define an extended network 𝐺′ = (𝑉′, 𝐴′). Nodes representing locations where 
non-driving activities take place are expanded to explicitly include these activities as edges in 
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the graph. Figure 113 shows the subnetworks that will replace the expanded nodes. Each edge 
has its activity indicated below the arrow. Non-drive edges that have a fixed duration have their 
duration indicated above the arrow. The incoming/outgoing edges of the subnetwork are the 
incoming/outgoing edges of the expanded node. 

Rest Areas: Off-duty periods of different durations satisfy different HOS constraints, so rest 
area nodes are expanded to include a different path for each type of off-duty period. In this 
case, only 3 types are considered. They are break, daily rest and weekly rest, which have 
minimum durations of 𝑡𝑏, 𝑡𝑟 and 𝑡𝑤, respectively. Figure 113a shows the subnetwork 
representing the node after expansion. The duration of the second half of each path is a non-
negative decision variable used to model rest time beyond the minimum required. We only 
restrict arrival time, so time-windows that were assigned to the original rest area node are 

assigned only to the entrance node 𝑣𝑖
𝑖𝑛. However, if a parking facility closes at certain times and 

requires vehicles to leave before then, this restriction can be modeled by a time-window at the 
exit node 𝑣𝑖

𝑜𝑢𝑡. Rest areas with restrictions on the duration of stay can be modeled by 
restricting the values that the second half of each path can take and by removing paths with 
minimum duration exceeding the limit (e.g., if a rest area does not allow stops longer than 4 
hours, the paths for daily and weekly rests can be removed, and the second half of the break 
path restricted to at most 3.5 hours ). In the remainder of the chapter, the central nodes of 

each path, 𝑣𝑖
𝑏, 𝑣𝑖

𝑟 and 𝑣𝑖
𝑤 will be referred to as break, daily rest and weekly rest nodes, 

respectively. Let 𝑉𝑏, 𝑉𝑟 and 𝑉𝑤 represent the set of all break, daily rest and weekly rest nodes, 
respectively. 

Origin: The choice of departure time from the Origin node does not have the same effect as the 
choice of departure time from TPLs. We assume it does not affect HOS resources, but that it 
might affect cost. Therefore, it must be treated differently. The Origin node is replaced by the 
subnetwork in Figure 113b to model the vehicle’s departure time. Departure time constraints 
can be modeled either by the set of allowed values for the duration of that edge, or as a time-
window constraint on the departure node 𝑣𝑑𝑒𝑝. 

Clients: Client nodes are expanded as shown in Figure 113c. The service edge in the subnetwork 
is used to model the service time at each client. As the regulation differentiates between 
driving and on-duty time, service time must be treated differently from the driving time. The 
time-windows that were assigned to the original client node will be assigned only to the 

entrance node 𝑣𝑖
𝑖𝑛. 
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Figure 113. Sub-networks used to model non-driving activities. 

System Equations 

As the driver’s schedule must comply with the HOS regulations, each regulation constraint is 
modeled by a different resource that must be kept below the limits described in the regulation 
throughout the whole path. The resources considered are: 

• current time (𝜂0) 

• cost (𝑐) 

• elapsed time since last break (𝜂𝑏) 

• elapsed time since last daily rest (𝜂𝑟) 

• accumulated driving time since last daily rest (𝜓𝑟) 

• accumulated on-duty time since last weekly rest (𝜓𝑤) 

Each state of the system can be described by the tuple 𝑥 = (𝑖, 𝜃), where 𝑖 ∈ 𝑉′ is the current 
node and 𝜃 = (𝜂0, 𝑐, 𝜂𝑏 , 𝜂𝑟 , 𝜓𝑟 , 𝜓𝑤) lists the current resource values. Each arc (𝑖, 𝑗) ∈ 𝐴′ is 
assigned a set of allowed durations 𝛥𝑖𝑗 and a length 𝑙𝑖𝑗. When (𝑖, 𝑗) represents a road section, 

then 𝛥𝑖𝑗 = {𝑑𝑖𝑗} and 𝑙𝑖𝑗 is the length of the associated arc from 𝐴. For the other types of arcs 

(break, daily rest, weekly rest, departure, service), present only in 𝐴′, 𝑙𝑖𝑗 is zero. If the arc has a 

fixed duration, 𝛥𝑖𝑗 is a single element set containing that duration. If the arc has a variable 

duration, like the departure arc and the arcs used to define off-duty period extensions, 𝛥𝑖𝑗 =

[0,∞). This interval can be further restricted to avoid unwanted decisions being checked, e.g., 

 

(a) Sub-network used to expand rest area nodes. 

 
 departure drive 

(b) Sub-network used to expand the origin node. 

 
 drive service drive 

(c) Sub-network used to expand client nodes. wi is the service time. 
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breaks should not be extended to the point where they are longer than a daily rest’s minimum 
duration. 

Let 𝑥𝑘 = (𝑣𝑘, 𝜃𝑘), where 𝜃𝑘 = (𝜂𝑘
0, 𝑐𝑘, 𝜂𝑘

𝑏 , 𝜂𝑘
𝑟 , 𝜓𝑘

𝑟 , 𝜓𝑘
𝑤), represent the system’s state after 𝑘 

decisions. Let 𝑈(𝑥𝑘) represent the set of feasible decisions at state 𝑥𝑘. Each decision is 
described by a tuple 𝑢𝑘 = (𝑣𝑘+1, 𝛿𝑘), where 𝑣𝑘+1 is the next node to be visited, and 𝛿𝑘 is the 
time required to reach it. The evolution of the system is described by: 

 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘), ∀𝑥𝑘 ∈ 𝑋, 𝑢𝑘 ∈ 𝑈(𝑥𝑘), (94) 

 𝑈(𝑥𝑘) = {𝑢𝑘 = (𝑣𝑘+1, 𝛿𝑘)|𝑓(𝑥𝑘, 𝑢𝑘) ∈ 𝑋,

𝑥𝑘 = (𝑣𝑘, 𝜃𝑘), (𝑣𝑘, 𝑣𝑘+1) ∈ 𝐴′, 𝛿𝑘 ∈ 𝛥𝑣𝑘𝑣𝑘+1},
 (95) 

where 𝑋 is the set of feasible states. As the resources are affected differently by the activities 
involved, the function 𝑓(⋅) is defined separately for each activity. Furthermore, as the definition 
of 𝑓(⋅) is trivial for the update of the next node, i.e., it is always equal to the first element of the 
decision tuple, this part will be omitted. The resource update rules are modeled by a set (one 
for each activity) of resource extension functions (REF), which are described in Table 22. These 
functions take the resource vector 𝜃𝑘, the duration 𝛿𝑘 and length 𝜇𝑘 = 𝑙𝑣𝑘𝑣𝑘+1  of the chosen 

arc as arguments, and return the new resource vector 𝜃𝑘+1. The functions 𝑓𝑑, 𝑓𝑠, 𝑓𝑏, 𝑓𝑟, 𝑓𝑤 
and 𝑓0 are used for the activities drive, service, break, daily rest, weekly rest and departure, 

respectively. For example, if edge (𝑣𝑘, 𝑣𝑘+1)’s activity is drive, then 𝜂𝑘+1
𝑏 = 𝜂𝑘

𝑏 + 𝛿𝑘, but if 
(𝑣𝑘, 𝑣𝑘+1)’s activity is break, then 𝜂𝑘+1

𝑏 = 0. The assignment of activities to the arcs of the 
extended network is described in the section Extended Network. The cost is modeled as a linear 
combination of the distance traveled and the time spent in each activity throughout the trip. 
𝛼𝑑, 𝛼𝑠, 𝛼𝑏, 𝛼𝑟, 𝛼𝑤 and 𝛼0 are the hourly costs applied to activities drive, service, break, daily 

rest, weekly rest and departure, respectively. We assume that 𝛼0 < 𝛼𝑏 = 𝛼𝑟 = 𝛼𝑤. 𝛽𝑑 is the 
cost per kilometer traveled, it is applicable only to the activity drive. Related works usually use 
total trip duration, on-duty time, travel distance or a combination of those factors as the cost, 
so our formulation is flexible enough to model most cost functions found in the literature. 
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Table 22. Resource Extension Functions 

 𝑓𝑑 𝑓𝑠  𝑓𝑏  𝑓𝑟 𝑓𝑤 𝑓0 

𝜂𝑘+1
0 =   𝜂𝑘

0
 +  𝛿𝑘   

𝑐𝑘+1 − 𝑐𝑘 = 𝛼𝑑𝛿𝑘+ 𝛽𝑑μk 𝛼𝑠𝛿𝑘  𝛼𝑏𝛿𝑘  𝛼𝑟𝛿𝑘 𝛼𝑤𝛿𝑘 𝛼0𝛿𝑘 

𝜂𝑘+1
𝑏 = 𝜂𝑘

𝑏 + 𝛿𝑘   0  𝜂𝑘
𝑏 

𝜂𝑘+1
𝑟 = 𝜂𝑘

𝑟 + 𝛿𝑘   0 𝜂𝑘
𝑟  

𝜓𝑘+1
𝑟 = 𝜓𝑘

𝑟 + 𝛿𝑘  𝜓𝑘
𝑟   0 𝜓𝑘

𝑟  

𝜓𝑘+1
𝑤 = 𝜓𝑘

𝑤 + 𝛿𝑘   𝜓𝑘
𝑤  0 𝜓𝑘

𝑤  

Constraints 

There are two types of constraints, time-window constraints, used to model arrival time 
restrictions at client locations and parking availability at TPLs, and HOS constraints to model the 
compliance to HOS regulations. A state 𝑥𝑘 = (𝑣𝑘, 𝜃𝑘) is only feasible if it satisfies all constraints. 
Below we describe each constraint: 

Time-Window Constraints: Each node 𝑖 representing a client location or TPL has a set of 𝑇𝑖 

disjoint time-windows. Each time-window is defined by a tuple (𝑡𝑖,𝜏
𝑚𝑖𝑛 , 𝑡𝑖,𝜏

𝑚𝑎𝑥) representing the 

minimum and maximum arrival times allowed by that time-window, where 𝜏 ∈ {1,⋯ , 𝑇𝑖} is the 
index of the window. A state 𝑥𝑘 with 𝑣𝑘 = 𝑖 satisfies the time-windows constraints if and only if 

𝜂𝑘
0 ∈ ⋃ [𝑡𝑖𝜏

𝑚𝑖𝑛 , 𝑡𝑖𝜏
𝑚𝑎𝑥]

𝑇𝑖
𝜏=1 . 

HOS Constraints: Each HOS related resource has a maximum allowed value defined by the 
regulation introduced in the section USA’s Hours of Service Regulations. Let 𝑡𝑒𝑏 be the limit for 
elapsed time between breaks, 𝑡𝑒𝑟 the limit for elapsed time between daily rests, 𝑡𝑎𝑟 the limit 
for accumulated driving time between daily rests, and 𝑡𝑎𝑤 the limit for accumulated on-duty 
time between weekly rests. Then a feasible state 𝑥𝑘 must satisfy: 

 𝜂𝑘
𝑏 ≤ 𝑡𝑒𝑏 , 𝜂𝑘

𝑟 ≤ 𝑡𝑒𝑟 , 𝜓𝑘
𝑟 ≤ 𝑡𝑎𝑟 , 𝜓𝑘

𝑤 ≤ 𝑡𝑎𝑤 (96) 

Note that the regulation restricts driving, but not other working activities. So, if a client has a 
parking facility that does not require driving to be reached, that parking facility can be modeled 
as a TPL right after the client exit node and the HOS restrictions could be relaxed for those 
particular client exit and TPL entrance nodes. The time limits may be exceeded during service, 
but the driver would be able to rest before driving, so the schedule would still satisfy the HOS 
regulations. 
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SPTDSP-PA Formulation 

The objective is to find a minimum cost route and schedule that satisfies the above constraints. 
The cost is modeled by the resource 𝑐. Let 𝑋𝑑 represent the set of terminal states, i.e., the 
feasible states at the destination node. We refer to the node with no outgoing edges in 𝐺′ as 
the destination node. It is assumed that all terminal states are absorbing, i.e., 𝑓(𝑥, 𝑢) = 𝑥, ∀𝑥 ∈
𝑋𝑑. Let 𝑛 be the maximum number of decisions required to reach the destination from the 
Origin node 𝑣0. As 𝐺′ is an acyclic directed graph, 𝑛 is finite and bounded by the number of 
nodes |𝑉′|. Given an initial state 𝑥0, the SPTDSP-PA is formulated as: 

 min
𝑢0,⋯,𝑢𝑛−1

𝑐𝑛 (97) 

 s.t.  𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘), 𝑘 = 0,1,⋯ , 𝑛 − 1  (98) 

 𝑥𝑘 ∈ 𝑋, 𝑢𝑘 = (𝑣𝑘, 𝛿𝑘) ∈ 𝑈(𝑥𝑘) (99) 

where 𝑋 is the set of feasible states. The objective function (97 minimizes the total trip cost 𝑐𝑛, 
defined as the cost resource at the last state, 𝑥𝑛. Constraint (98 controls the evolution of the 
system. Constraint (99) defines the domains of the variables used. 𝑈(𝑥𝑘) is defined in (95), and 
feasibility is defined in the section Constraints. In the following section we present a method for 
solving the SPTDSP-PA problem (97)-(99). 

Label-Correcting Method 

This section describes the dynamic programming-based label-correcting method used to solve 
the SPTDSP-PA. An overview of resource constrained shortest path problems, including labeling 
algorithm approaches, can be found in (Irnich and Desaulniers 2005; Pugliese and Guerriero 
2013). The general idea behind label-correcting methods is to progressively calculate the 
shortest path from the origin node to all other nodes until the shortest path to the destination 
is found. Due to the large number of paths generated, it is necessary to identify and discard 
inefficient paths as soon as possible. 

Overview 

This subsection explains the general working of the algorithm. Figure 114 shows the work-flow 
of the algorithm used. To every partial solution (𝑢0, 𝑢1, ⋯ , 𝑢𝑘−1) going from the origin node 𝑣0 
to a node 𝑣𝑘 ∈ 𝑉′ we assign a label consisting of the resource vector 𝜃𝑘  at node 𝑣𝑘, the slacks 
that will be described in the section Label Improvement, and information necessary to 
reconstruct the partial solution. For simplicity, we refer to a label by its associated resource 
vector 𝜃𝑘. 

Label Choice: Let OPEN be the list of untreated labels. OPEN is initialized with the initial state’s 
label and we use the small labels first method (D. P. Bertsekas 1993) to choose which label to 
treat first. New labels are inserted at OPEN’s start if smaller than the first label, and at the end 
otherwise. At each iteration OPEN’s first label is picked and expanded to generate new labels. 
Labels are compared lexicographically by their resources, following the order 
(𝜂0, 𝑐, 𝜓𝑤 , 𝜂𝑟 , 𝜓𝑟 , 𝜂𝑏). We give priority to resources that are reset less often. Giving priority to 
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the arrival time (𝜂0) also helps with the dominance check as a label can only be dominated by 
labels with lesser or equal arrival time. The method used to manage OPEN is represented in 
Figure 114 by the ‘Search Method’ block. 

Expansion: Each label describes a certain state of the system (and also contains information on 
the partial solution that generated it). The ‘expansion’ step consists of heuristically choosing a 
set of feasible decisions and applying them to that label, thus generating new labels/partial 
solutions. This step is represented in Figure 114 by the ‘Expand Partial Solution’ block, and, as 
shown in the diagram, depends on several factors. The set of feasible decisions at any given 
state depends on the network topology and on the regulations, which include both the HOS and 
time-window/parking constraints, being considered. Ideally, all feasible decisions should be 
tested during expansion. However, our model also has a number of continuous decision 
variables, making it impossible to test all of them. The ‘Expansion Criteria’ block refers to the 
heuristics defining how the set of feasible decisions is sampled. In addition, the 𝐴∗ algorithm 
and dominance rules are also used to speed up computation by discarding inefficient partial 
solutions before their labels are inserted into OPEN. 

Label Improvement: Due to the usage of heuristics during node expansion, the partial solutions 
generated may contain inefficiencies. Our algorithm keeps track of these inefficiencies and, at 
nodes where the driver can choose to extend an off-duty period, it checks whether future labels 
can be improved by updating upstream decisions. This approach is based on how Goel tracked 
unnecessary off-duty time to adjust infeasible partial solutions in (Asvin Goel 2012). Under 
certain conditions, by changing the departure time from the origin or the duration of some 
upstream rest stops, it is possible to reach a particular node at the same time but spending 
fewer resources or at a lower cost. This step is represented by the ‘Update Upstream Labels’ 
block. 

Dominance Check: We say that a label is dominated when it cannot generate solutions that are 
better than the ones generated by another label. A label can only dominate or be dominated by 
a label of the same node, so the algorithm also keeps a list of untreated labels separated by 
node to speed up the dominance check. When new labels for rest nodes are created, the 
algorithm performs dominance checks between the new label and the existing ones. If the new 
label is dominated by an existing one, it is not inserted into OPEN. Any labels dominated by the 
new one are discarded. In order to reduce the computation load, dominance is checked only on 
rest nodes, other nodes’ labels are always accepted. 

Termination Conditions: The algorithm stops if it finds a solution that is close enough to the 
estimated lower-bound, or if OPEN is empty. 
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Figure 114. Label-correcting algorithm workflow diagram. 

Partial Solution Expansion 

Expansion Criteria 

If the node being treated has no time duration decision, then there is only a finite number of 
possible decisions and all feasible decisions should be tested. If a time duration decision is 
required, i.e., at rest nodes and at the origin, then it is necessary to choose which decisions to 
test. 

Let 𝐴𝑑 ⊂ 𝐴′ represent the set of all arcs with driving as their assigned activity. For every node 
pair (𝑝, 𝑞) such that there is a directed path from 𝑝 to 𝑞, let 𝒟(𝑝, 𝑞) and 𝒟𝑑(𝑝, 𝑞) be, 
respectively, the minimum travel time (including service time) and minimum driving time 
between nodes 𝑝 and 𝑞 with all resource, time-window and HOS constraints relaxed: 
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𝒟(𝑝, 𝑞) = {
min(𝛥𝑝𝑞), if (𝑝, 𝑞) ∈ 𝐴′

min
(𝑝,𝑘)∈𝐴′

(min(𝛥𝑝𝑘) + 𝒟(𝑘, 𝑞)) , o/w
 (100) 

 

𝒟𝑑(𝑝, 𝑞) = {

0, if (𝑝, 𝑞) ∈ 𝐴′ ∖ 𝐴𝑑

min(𝛥𝑝𝑞), if (𝑝, 𝑞) ∈ 𝐴𝑑

min
(𝑝,𝑘)∈𝐴′

(𝒟𝑑(𝑝, 𝑘) + 𝒟𝑑(𝑘, 𝑞)), o/w
 (101) 

If there is no directed path from 𝑝 to 𝑞, then 𝒟(𝑝, 𝑞) = 𝒟𝑑(𝑝, 𝑞) = ∞. 

Consider the label 𝜃𝑖 = (𝜂𝑖
0, 𝑐𝑖, 𝜂𝑖

𝑏 , 𝜂𝑖
𝑟 , 𝜓𝑖

𝑟 , 𝜓𝑖
𝑤) relative to a partial solution ending at node 𝑣𝑖. 

Let 𝒩(𝑥𝑖) represent the set of nodes that can be reached from state 𝑥𝑖  without resting, given 
by: 

 𝒩(𝑥𝑖) = {𝑣 ∈ 𝑉′| 𝒟(𝑣𝑖, 𝑣) ≤ 𝜌(𝜃𝑖) ∧ 𝒟𝑑(𝑣𝑖, 𝑣) ≤ 𝑡
𝑎𝑟 − 𝜓𝑖

𝑟} (102) 

 𝜌(𝜃𝑖) = min(𝑡
𝑒𝑏 − 𝜂𝑖

𝑏 , 𝑡𝑒𝑟 − 𝜂𝑖
𝑟 , 𝑡𝑎𝑤 − 𝜓𝑖

𝑤) (103) 

where 𝜌(𝜃𝑖) represents how much time is left until one of the HOS constraints related to 

elapsed time (𝜂𝑖
𝑏 , 𝜂𝑖

𝑟) or on-duty (𝜓𝑖
𝑤) time is broken. As the constraints considered in 𝜌(𝜃𝑖) are 

affected by service time, 𝜌(𝜃𝑖) is compared to 𝒟(𝑣𝑖 , 𝑣). The accumulated driving time since last 
daily rest (𝜓𝑟) is not affected by service time, so 𝑡𝑎𝑟 − 𝜓𝑖

𝑟  is considered separately and 

compared to 𝒟𝑑(𝑝, 𝑞). Let �̃�𝑖 = (𝑣𝑖 , �̃�𝑖) represent a modified 𝑥𝑖  where the resources already 

account for potential label improvements. This is used to avoid ignoring decisions that are only 
feasible after label improvement. Label improvement is described in the section Label 

Improvement, and �̃�𝑖  is defined in (110). When expanding 𝜃𝑖, for each time-window of each 
node in 𝒩(�̃�𝑖), the shortest decision that can generate a path that will satisfy the time-window 

is tested. The set �̂�(𝑥𝑖) of feasible decisions to be tested is described by: 

 �̂�(𝑥𝑖) = {(𝑣, 𝛿) ∈ 𝑈(𝑥�̃�)|∃𝑙 ∈ 𝒩(𝑥�̃�), 𝜏 ∈ {1,⋯ , 𝑇𝑙}, 𝛿 = 𝑚𝑖𝑛(𝐵(𝑥𝑖, 𝑣, 𝑙, 𝜏))} (104) 

 𝐵(𝑥𝑖, 𝑣, 𝑙, 𝜏) = {𝑦 ∈ Δ𝑣𝑖𝑣|𝜂𝑖
0 + 𝑦 + 𝒟(𝑣, 𝑙) ∈ [𝑡𝑙𝜏

𝑚𝑖𝑛, 𝑡𝑙𝜏
𝑚𝑎𝑥]} (105) 

where 𝐵(𝑥𝑖, 𝑣, 𝑙, 𝜏) represents the duration of decisions passing through node 𝑣 that, given the 

current state 𝑥𝑖, can generate paths that reach node 𝑙 within the time-window [𝑡𝑙𝜏
𝑚𝑖𝑛, 𝑡𝑙𝜏

𝑚𝑎𝑥]. 

Label Improvement 

This step targets specifically nodes that have a time duration decision, i.e., rest nodes and the 
origin. These nodes have an outgoing arc with controllable length, which is used to define if and 
how much the driver will wait at the rest stop after completing the minimum required off-duty 
period, and when to depart from the origin. While drivers may need to extend their rest 
duration to accommodate time-window constraints, it is important to notice that the waiting 
times at different nodes are not equivalent. One example is that extending a break is more 
‘expensive’ than a weekly/daily rest, because breaks affect more resources. In terms of wait 
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time ‘cost’ we can rank the node types as follows: origin < weekly/daily rests<breaks. So, when 
a waiting time is needed, it is more efficient to try to extend the waiting time at the last 
upstream node of a ‘cheaper’ type. In order to do so we keep track of how much we can extend 
the wait times of the origin node and of the last upstream weekly/daily rest node without 
affecting the feasibility of solutions generated. 

Let 𝑁𝑑 denote the set of nodes that have a time duration decision, and 𝑁𝑡 the set of nodes that 

have time-window constraints. Consider a partial solution with path (𝑣0, 𝑣1, ⋯ , 𝑣𝑗), let 𝛿𝑖 be 

the duration of the decision taken at node 𝑣𝑖, 𝜂𝑖
0 the arrival time at node 𝑣𝑖, and [𝑎𝑖, 𝑏𝑖] the 

time-window being used at node 𝑣𝑖, such that 𝑎𝑖 ≤ 𝜂𝑖
0 ≤ 𝑏𝑖. The sets of slack variables {𝜎𝑖,𝑗} 

and {𝜆𝑖,𝑗} are used to track by how much 𝛿𝑖 can be updated. The variable 𝜎𝑖,𝑗 stores the surplus 

of off-duty time between nodes 𝑣𝑖  and 𝑣𝑗 , which can be interpreted as by how much 𝛿𝑖 can be 

increased without affecting 𝜂𝑗
0. 𝜆𝑖,𝑗 stores by how much 𝛿𝑖 can be extended without pushing 𝜂𝑘

0 

outside of the time-window [𝑎𝑘, 𝑏𝑘] for all 𝑖 < 𝑘 ≤ 𝑗. They are defined as follows: 

 

𝜎𝑖,𝑗 = {

0, 𝑖𝑓  𝑗 = 𝑖 + 1  
𝜎𝑖,𝑗−1 + 𝛿𝑗−1, 𝑖𝑓 𝑗 > 𝑖 + 1 𝑎𝑛𝑑 𝑣𝑗−1 ∈ 𝑁𝑑
𝜎𝑖,𝑗−1, 𝑖𝑓 𝑗 > 𝑖 + 1 𝑎𝑛𝑑 𝑣𝑗−1 ∉  𝑁𝑑

 (106) 

 

λi,j =

{
 
 

 
 

∞, 𝑖𝑓  j = i + 1  and vj ∉ Nt
𝜆𝑖,𝑗−1, 𝑖𝑓 𝑗 > 𝑖 + 1 𝑎𝑛𝑑 𝑣𝑗−1 ∉ 𝑁𝑡

𝑏𝑗 − η𝑗
0+𝜎𝑖,𝑗, 𝑖𝑓 𝑗 = 𝑖 + 1  𝑎𝑛𝑑   𝑣𝑗 ∈ 𝑁𝑡

𝑚𝑖𝑛(𝜆𝑖,𝑗−1, 𝑏𝑗 − 𝜂𝑗
0+𝜎𝑖,𝑗),               𝑜/𝑤

 (107) 

where 𝑣𝑖 ∈ 𝑁𝑑 and 𝑖 < 𝑗. We define 𝜆𝑖,𝑖 = 𝜎𝑖,𝑖 = 0. For each generated label, the 𝜎’s and 𝜆’s 

stored are the ones relative to the origin and the last weekly or daily rest. As can be seen in the 
REFs on Table 22, waiting at these types of nodes spends fewer resources than waiting at break 
nodes. In terms of resource expenditure when extending an off-duty period, weekly and daily 
rests are equivalent, so only the information regarding the most recent one is stored. 

Let (𝑣𝑙, 𝐻) ∈ �̂�(𝑥𝑗) be one of the decisions chosen to expand state 𝑥𝑗 = (𝑣𝑗 , 𝜃𝑗), 𝑣𝑗 ∈ 𝑁𝑑, and 

let 𝜃𝑙 = (𝜂𝑙
0, 𝑐𝑙, 𝜂𝑙

𝑏 , 𝜂𝑙
𝑟 , 𝜓𝑙

𝑟 , 𝜓𝑙
𝑤) be the label generated by this decision. If min(𝜎0,𝑗, 𝜆0,𝑗) > 0, 

then the waiting time 𝛿0 at node 𝑣0 can be increased to 𝛿0
∗ as follows: 

 𝛿0
∗ = min(𝜆0,𝑗, 𝜎0,𝑗 + 𝐻) + 𝛿0 (108) 

A new label 𝜃1′ is created for node 𝑣1 using the new decision (𝑣1, 𝛿0
∗). Instead of putting this 

label in OPEN, it is treated immediately and separate from the others. This label will be 
expanded passing by the same nodes as the partial solution that is being improved, but taking 
the shortest decisions that will not decrease the arrival time at any intermediate node. Note 
that the intermediate labels generated are not stored in OPEN, and only one decision is used in 
their expansion. We want to generate an updated version of the partial solution being 
improved, not a new tree of partial solutions. This updated path will generate a label 𝜃𝑙′ with 
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cost resource 𝑐𝑙
′ = 𝑐𝑙 + (𝛼0 − 𝛼𝑟)min(𝜆0,𝑗, 𝜎0,𝑗 + 𝐻) that dominates 𝜃𝑙. Before storing the 

label in OPEN, we check if other slacks can be removed. 

Let 𝑣𝑟 be the last weekly or daily rest node visited, with 𝑣𝑟 = 𝑣0 if none was visited. If 

min(𝜎0,𝑗 , 𝜆0,𝑗) = 0, but 𝑟 ≠ 𝑗 and min(𝜎𝑟,𝑗 , 𝜆𝑟,𝑗) > 0, then the same procedure can be used to 

update 𝛿𝑟 using 𝜎𝑟,𝑗 and 𝜆𝑟,𝑗. Updating 𝛿𝑟 reduces 𝜂𝑗
𝑟 (elapsed time since last daily rest) by 

min(𝜆𝑟,𝑗 , 𝜎𝑟,𝑗 + 𝐻). The improved label 𝜃𝑙 ′ is given by: 

 𝜃𝑙′ = (𝜂𝑙
0,  𝑐𝑙 + (𝛼0 − 𝛼𝑟)min(𝜆0,𝑗, 𝜎0,𝑗 + 𝐻), 𝜂𝑙

𝑏 , 𝜂𝑙
𝑟 −min(𝜆𝑟,𝑗, 𝜎𝑟,𝑗 + 𝐻),  𝜓𝑙

𝑟 ,  𝜓𝑙
𝑤) (109

) 

After both slacks have been removed, 𝜃𝑙′ is stored in OPEN. A pseudocode representation of 

this path update process is presented in Appendix L. The �̃�𝑖  used in the section Expansion 
Criteria considers the maximum improvements that could be obtained (i.e., large 𝐻) and is 
defined as: 

 �̃�𝑖 = (𝜂𝑖
0,  𝑐𝑖 + (𝛼0 − 𝛼𝑟)𝜆0,𝑖,  𝜂𝑖

𝑏 ,  𝜂𝑖
𝑟 − 𝜆𝑟,𝑖,  𝜓𝑖

𝑟 ,  𝜓𝑖
𝑤) (110) 

In summary, the algorithm will, at first, only explore the minimum waiting times necessary to 
satisfy the time-windows of nodes reachable without resting, not considering how that affects 
the stops that follow. When the algorithm reaches a state that indicates that earlier decisions 
can be improved, the current partial solution is updated according to the decisions that will be 
tested at the current state. This method reduces the number of unnecessary labels generated 
and also handles the continuous variables without discretizing and testing the whole decision 
space, which would be computationally expensive. Appendix K presents an optimality proof for 
the algorithm proposed. 

𝑨∗ : The 𝐴∗ algorithm is used during expansion to discard labels that cannot generate solutions 
with cost lower than the current upper-bound. Let 𝑣𝑡 be the destination node, 𝑈𝑃 be an upper-
bound for the optimum solution’s cost, and 𝐿𝑂𝑊(𝑣𝑖 , 𝑣𝑡 , 𝜃𝑖) be a lower-bound for the cost of a 
trip from 𝑣𝑖  to 𝑣𝑡 with initial resources 𝜃𝑖. If 𝑐𝑖 + 𝐿𝑂𝑊(𝑣𝑖, 𝑣𝑡 , 𝜃𝑖) > 𝑈𝑃, then 𝜃𝑖  is discarded. 
Faster termination can be achieved by setting a tolerance 𝜖 > 0, and replacing the condition by 
𝑐𝑖 + 𝐿𝑂𝑊(𝑣𝑖, 𝑣𝑡 , 𝜃𝑖) > 𝑈𝑃 − 𝜖. By accepting only labels that can improve the current upper 
bound by at least 𝜖, running speed is reduced while the solution obtained is kept within 𝜖 of 
optimality. 

In order to find a lower bound for the cost of solutions that can be generated from a given state 
𝑥𝑖 = (𝑣𝑖, 𝜃𝑖), a relaxed version of the problem is solved. The minimum driving time from the 
current node to the destination is used to calculate the minimum trip duration until the 
destination, relaxing the time-window constraints and allowing the driver to rest anywhere. Let 
𝐷𝐻𝑂𝑆(𝑑, 𝜃) represent the minimum duration of a HOS-compliant trip with 𝑑 driving hours and 
initial resource vector 𝜃, assuming the driver can rest anywhere, and without considering 
service time and time-window constraints, i.e., if a driver were at the beginning of an empty 
straight road of length 𝑑 km where he/she can rest anywhere, given an initial resource vector 
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𝜃, how long would he/she take to reach the end of the road without breaking the HOS 
regulations. Whenever a new state 𝑥𝑖  is generated, we use the minimum driving time from 𝑣𝑖  
to 𝑣𝑡, 𝒟𝑑(𝑣𝑖, 𝑣𝑡), and the label’s resource vector 𝜃𝑖  to calculate a lower bound 
𝐷𝐻𝑂𝑆(𝒟𝑑(𝑣𝑖, 𝑣𝑡), 𝜃𝑖) for the time spent driving or resting until 𝑣𝑡 considering only HOS 
restrictions. Appendix I describes the method used to calculate 𝐷𝐻𝑂𝑆(𝑑, 𝜃) with and without 
considering the current HOS resource values. Let 𝐷𝑠(𝑣𝑖 , 𝑣𝑡) and 𝐷𝑙(𝑣𝑖, 𝑣𝑡) represent the service 
time and minimum distance between nodes 𝑣𝑖  and 𝑣𝑡, given by: 

 

𝒟𝑠(𝑝, 𝑞) = {

0, if (𝑝, 𝑞) ∈ 𝐴′ ∖ 𝐴𝑠

min(𝛥𝑝𝑞), if (𝑝, 𝑞) ∈ 𝐴𝑠

min
(𝑝,𝑘)∈𝐴′

(𝒟𝑠(𝑝, 𝑘) + 𝒟𝑠(𝑘, 𝑞)), o/w
 (111) 

 

𝒟𝑙(𝑝, 𝑞) = {

0, if (𝑝, 𝑞) ∈ 𝐴′ ∖ 𝐴𝑑

𝑙𝑝𝑞 , if (𝑝, 𝑞) ∈ 𝐴𝑑

min
(𝑝,𝑘)∈𝐴′

(𝒟𝑙(𝑝, 𝑘) + 𝒟𝑙(𝑘, 𝑞)), o/w
 (112) 

where 𝐴𝑠 ⊂ 𝐴′ is the set of service arcs. The lower bound 𝐿𝑂𝑊(𝑣𝑖, 𝑣𝑡, 𝜃𝑖) for the cost of a trip 
from 𝑣𝑖  to 𝑣𝑡 with initial resource 𝜃𝑖  is given by: 

 𝐿𝑂𝑊(𝑝, 𝑞, 𝜃) = 𝛼𝑟𝐷𝑟(𝑝, 𝑞, 𝜃) + 𝛼𝑠𝐷𝑠(𝑝, 𝑞) + 𝛼𝑑𝒟𝑑(𝑝, 𝑞) + 𝛽𝑑𝒟𝑙(𝑝, 𝑞) (113) 

 𝐷𝑟(𝑝, 𝑞, 𝜃) = 𝐷𝐻𝑂𝑆(𝒟𝑑(𝑝, 𝑞), 𝜃) − 𝒟𝑑(𝑝, 𝑞) (114) 

where 𝐷𝑟(⋅) represents how much time from 𝐷𝐻𝑂𝑆(⋅) would be spent resting. 

As 𝐷𝐻𝑂𝑆(𝑑, 𝜃) is independent of the network topology and time-windows, it can be calculated 
beforehand for different values of 𝑑 and 𝜃, and used in any problem instance. However, 
discretizing the possible values of 𝑑 and 𝜃 and storing the results for every combination would 
require a lot of storage space. Setting all HOS related resources to zero and discretizing only 𝑑 
when calculating and storing 𝐷𝐻𝑂𝑆(⋅) greatly reduces storage space, but also generates a looser 
bound. Another option is to store the results for a limited number of (𝑑, 𝜃) combinations, and 
use those results to approximate others or accelerate their computation during run time. The 

formulation presented in Appendix I uses 𝐷𝐻𝑂𝑆(𝑑, (0,0, … ,0)) to calculate 𝐷𝐻𝑂𝑆(𝑑, 𝜃) for a 

general 𝜃. We tested storing only the results of 𝐷𝐻𝑂𝑆(𝑑, (0,0, … ,0)) and calculating the others 

during run time, but the lower-bound improvement was not enough to compensate for the 
extra computations. Therefore, in our experiments, the lower-bound is calculated without 
considering current HOS resources. 

The initial upper bound can be taken from a known sub-optimal solution, or calculated based 
on the planning horizon and max distance to destination, and updated as the algorithm finds 
better solutions. If the initial upper bound is set too high, the solve time can increase 
significantly. However, we noticed that, as the algorithm can quickly determine that the 
problem is infeasible when the upper bound is too low, it is efficient to set a low upper bound 
and increase it gradually until the problem becomes feasible. 



 196 

Dominance Rules 

Let 𝜃𝑖 = (𝜂𝑖
0, 𝑐𝑖, 𝜂𝑖

𝑏 , 𝜂𝑖
𝑟 , 𝜓𝑖

𝑟 , 𝜓𝑖
𝑤) and 𝜃𝑖

′ = (𝜂𝑖
0′, 𝑐𝑖

′, 𝜂𝑖
𝑏′, 𝜂𝑖

𝑟′, 𝜓𝑖
𝑟′, 𝜓𝑖

𝑤′) denote labels for two 

different partial solutions ending at the same node 𝑣𝑖. If 𝜃𝑖  dominates 𝜃𝑖′, then for every 
solution that can be generated by expanding 𝜃𝑖 ′, there is a better solution that can be 
generated by expanding 𝜃𝑖. For example, assume 𝜃𝑖 = (10,9,7,10,10,10) and 𝜃𝑖′ =
(10,10,7,10,10,10), and that neither label can be improved. As the arrival times are equal, i.e., 

𝜂𝑖
0 = 𝜂𝑖

0′, any time-window that can be satisfied starting from 𝜃𝑖′ can also be satisfied starting 
from 𝜃𝑖. As all HOS related resources are also equal, no label has an advantage regarding when 
a rest stop will be required. Therefore, as 𝜃𝑖  has a smaller cost (𝑐𝑖 = 9, 𝑐𝑖

′ = 10 ), this cost 
advantage will be carried to all paths generated from 𝜃𝑖, making them cheaper than paths 

generated from 𝜃𝑖′. The example portrays the base case for dominance check, when 𝜂𝑖
0 = 𝜂𝑖

0′ 
and neither label can be improved. In this case, if all resources in 𝜃𝑖  are smaller or equal to the 
resources in 𝜃𝑖′, with at least one being strictly smaller, 𝜃𝑖  dominates 𝜃𝑖′. Including the effects 
of possible label improvements makes the conditions a little more complicated. Similar 
dominance rules were used in (Asvin Goel 2012). However, as they consider that early arrivals 
are allowed and that label improvement is always performed before dominance checks, these 
rules cannot be used in our model. 

As we do not allow early arrivals, when 𝜂𝑖
0 < 𝜂𝑖

0′, paths generated from 𝜃𝑖  may be unable to 
satisfy time-window constraints of downstream nodes, otherwise satisfied by paths generated 
from 𝜃𝑖′, due to arriving too early. However, by using the particular structure of the problem, 

dominance rules for when 𝜂𝑖
0 ≤ 𝜂𝑖

0′ were established for weekly rest, daily rest and break 
nodes. These are the only types of nodes with controllable outgoing arc duration, which can be 
used to equalize the arrival times at the next node. Thus, the dominance conditions were 
derived by using their REFs to define when every label generated from 𝜃𝑖′ through a decision 
(𝑗, 𝛿) is dominated (after label improvements) by the label generated from 𝜃𝑖  through the 

decision (𝑗, 𝛿 + 𝛾), where 𝛾 = 𝜂𝑖
0′ − 𝜂𝑖

0 ≥ 0. In order to reduce the number of dominance 
checks performed, only labels assigned to rest nodes (𝑣𝑖 ∈ 𝑉𝑏 ∪ 𝑉𝑟 ∪ 𝑉𝑤) are checked. As rest 
nodes’ dominance rules are not restricted to labels with matching arrival times, they have a 
greater potential for identifying and discarding inferior solutions. The dominance rules are 
given by: 

 𝑣𝑖 ∈ 𝑉𝑏 ∪ 𝑉𝑟 ∪ 𝑉𝑤  (115) 

 𝜂𝑖
0 + 𝛾 = 𝜂𝑖

0′  (116) 

 𝛾 ≥ 0, (117) 

 𝜂𝑖
𝑏 ≤ 𝜂𝑖

𝑏′ (118) 

 𝜓𝑖
𝑟 ≤ 𝜓𝑖

𝑟′ (119) 

 𝜓𝑖
𝑤 ≤ 𝜓𝑖

𝑤′ (120) 
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 𝑐𝑖 − 𝑐𝑖
′ ≤ 𝑔𝑐 (121) 

 𝜂𝑖
𝑟 − 𝜂𝑖

𝑟′ ≤ 𝑔𝑟 ,      if 𝑣𝑖 ∈ 𝑉𝑏 (122) 

 𝑐𝑖 − 𝑐𝑖
′ ≤ 𝛼0𝑤0 − 𝛼𝑟(𝛾 + 𝑤0) (123) 

 𝜂𝑖
𝑟 − 𝜂𝑖

𝑟′ ≤ −𝛾 − 𝑤𝑟 , if 𝑣𝑖 ∈ 𝑉𝑏 (124) 

where 𝑔𝑐, 𝑔𝑟, 𝑤0 and 𝑤𝑟 are defined as: 

 

gc = {

𝛼0𝑤0 − 𝛼𝑟(𝛾 + 𝑤0), 𝑖𝑓  𝜆0,𝑖 ≤ 𝜎0,𝑖 + γ

α0(y0 − γ) − αry0, 𝑖𝑓  (λ0,i > σ0,i + γ) ∧ (λ0,i
′ ≤ σ0,i

′)

min(α0(z0 − γ) − αrz0,  α0w0 − αr(γ + w0)),   𝑜/𝑤

 (125) 

 

gr = {

−γ − wr, 𝑖𝑓     𝜆𝑟,𝑖 ≤ 𝜎𝑟,𝑖 + γ

−yr, 𝑖𝑓   (λ𝑟,i > σ𝑟,i + γ) ∧ (λ𝑟,i
′ ≤ σ𝑟,i

′)

min(−zr,  −γ − wr) , o/w

 (126) 

 𝑤0 = 𝜆0,𝑖
′ − 𝜆0,𝑖, 𝑦0 = 𝜆0,𝑖

′ − 𝜎0,𝑖, 𝑧0 = 𝜎0,𝑖
′ − 𝜎0,𝑖  (127) 

 𝑤𝑟 = 𝜆𝑟,𝑖
′ − 𝜆𝑟,𝑖, 𝑦𝑟 = 𝜆𝑟,𝑖

′ − 𝜎𝑟,𝑖, 𝑧𝑟 = 𝜎𝑟,𝑖
′ − 𝜎𝑟,𝑖  (128) 

where (115) defines for which nodes these rules are applicable. Conditions (116) and (117) 
define 𝛾 and restrict its allowed values, so that labels can only be dominated by labels with a 
lower or equal arrival time. Conditions (118)-(124) describe the conditions on the cost and HOS 
resources. (118) is always valid as this is checked only at rest nodes, where the elapsed time 
since last break resource is reset, i.e., 𝜂𝑏 = 0. As the resources representing cost (𝑐) and 
elapsed time since last daily rest (𝜂𝑟) are affected by label improvements, the dominance rule 
must check if the solutions generated from 𝜃𝑖′ are inferior to ones generated from 𝜃𝑖  even if 
label improvement is performed at the current node, or at a downstream node. (121) and (122) 
include the effects of the currently available label improvements. (123) and (124) consider the 
impact of potential label improvements if the slacks cannot be completely used at the next 
decision. A partial solution might appear better at the current node, but be less flexible to 
adapt to downstream constraints, e.g., if 𝜃𝑖  was generated by a path with very loose time-
windows, it will have more flexibility to adjust upstream arrival times to reduce the amount of 
unnecessary off-duty time at downstream nodes. (125)-(128) define the auxiliary variables used 
to define (121)-(124). We can say that 𝜃𝑖  dominates 𝜃𝑖′ if conditions (115)-(124) are satisfied, 
with at least one among (118)-(124) being a strict inequality. Appendix J describes in detail how 
the dominance rules were obtained. 

Case Study 

To evaluate the proposed algorithm a set of test scenarios is created using the network shown 
in Figure 115. The network is based on a route going from San Diego to Seattle via the I-5 
freeway, and includes some possible detours. For easier visualization, the parking lots (𝑝𝑖 
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nodes) are displayed along the routes. On the actual graph, they are outside the routes, as in 
Figure 112, to allow for them to be bypassed. For simplicity, the distances between the routes 
and the parking lots are set to 0. 

 

Figure 115. Network used for experiments. Based on a main route going from San Diego to 
Seattle via the I-5 freeway indicated in red with double arrows, together some possible 
detours indicated with black arrows. 

We want to study the impact of HOS rules and parking constraints on the shortest path to the 
destination and compare the cost of taking parking availability information into account with 
the estimated costs of not doing so. Furthermore, to illustrate the importance of including 
parking information early in the planning process as opposed to only doing so at the scheduling 
stage, we also study scenarios where the driver is restricted to the main route. As mentioned in 
(Sun et al. 2013), not all drivers are allowed to choose their routes freely. If the carrier 
determines the route and does not consider parking availability information during route 
assignment, the trip’s duration and cost may be significantly larger than estimated by the 
carrier, especially if the driver is not allowed to adjust the route. In this case study, we take the 
trip duration as the cost, and we assume that there is no extra cost for waiting at the origin, i.e., 

𝛽 = 𝛼0 = 0 and 𝛼𝑑 = 𝛼𝑠 = 𝛼𝑏 = 𝛼𝑟 = 𝛼𝑤 = 1. 

The following aspects are considered when evaluating the algorithm: 

• What is the estimated cost of not using parking availability information during planning? 

• How often the minimum duration path includes one or more alternative routes? 

• Average driving times under varying alternative routes’ speed and in their absence. 

• Average trip duration under varying alternative routes’ speed and in their absence. 

Scenarios 

Taking longer routes (in terms of driving time) is beneficial only if the time saved due to better 
parking availability conditions is larger than the increase in driving time. The experiments focus 
on studying how the problem’s solution is affected by the usage of parking availability 
information, by the main route’s parking availability time-windows’ distribution and by the 
difference in driving time between the alternative routes and the main one (by varying the 
average speed on the alternative routes). 

Table 23 shows the distributions used to sample the start and end times of the three types of 
parking availability time-windows used in the tests. It is assumed that each day has a single 
time-window. The daily parking availability time-windows are defined by sampling a start and 
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an end time from normal distributions with the parameters listed in the table. The parameters 
given are in hours and follow the 24h format. The route drawn in red with double arrows on 
Figure 115 is taken as the main route. This route has the shortest driving time from origin to 
destination, so, in the absence of HOS and parking constraints, the optimal solution would go 
through this path. All road sections not included in the main route are considered alternative 
routes. For simplicity, we set all main route links’ average speed to 75km/h. The average speed 
of alternative route links vary with the scenario. Table 24 shows the parameters used for each 
set of scenarios, and how many instances were tested. Scenarios 10 to 12 restrict the driver to 
the main route, so alternative routes’ parameters are shown as blocked. The time-window 
configurations for departure and delivery times are shown in the lower part of Table 23. The 
departure time has a single time-window on the first day (0h to 24h), whereas the delivery time 
at the destination (𝐷) has daily time-windows (8h to 16h). Besides the single client case just 
described, the twelve scenarios were also tested for the case when node 𝑣4 is a client with a 
daily time-window (12h to 16h) and zero service time. All other parameters are the same as for 
the twelve original scenarios. 
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Table 23. Experiment Parameters 

Parking Time-windows Distribution 

 Start Time (h) End Time (h) 

Narrow N(9,1) N(16,1) 

Medium N(7,1) N(19,1) 

Wide N(5,1) N(22,1) 

 

Other Time-windows 

 

 Start Time (h) End Time (h) 

Departure (unique) 0 24 

Delivery at D (daily) 8 16 

Delivery at v4 (daily, 2 clients case) 12 16 

Table 24. Experiment Scenarios 

 
 Time-windows Average Speed (km/h) 

Scenario Instances Main Route Alternative 
Routes 

Main Route Alternative 
Routes 

1 100 Wide Wide 75 75 
2 100 Medium Wide 75 75 
3 100 Narrow Wide 75 75 
4 100 Wide Wide 75 70 
5 100 Medium Wide 75 70 
6 100 Narrow Wide 75 70 
7 100 Wide Wide 75 65 
8 100 Medium Wide 75 65 
9 100 Narrow Wide 75 65 
10 100 Wide blocked 75 blocked 
11 100 Medium blocked 75 blocked 
12 100 Narrow blocked 75 blocked 

Estimating the cost of disregarding parking information 

As previously stated, the truck parking shortage has multiple negative consequences for drivers, 
industry and society. While it is hard to accurately estimate the costs involved, in this section 
we propose a recourse function used to simulate how the driver would react if he/she were to 
arrive at a parking facility and find it unavailable, as well as the costs incurred. For each one of 
the scenarios explained previously, a solution is generated without including parking availability 
constraints. Then the recourse function is applied to each scenario’s solution in order to 
simulate the driver’s reactions. Three situations are considered: parking is available, parking is 
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unavailable and there is another facility within reach, parking is unavailable and no facility is 
within reach. 

Parking is available: In this case the driver follows the schedule. 

Parking is unavailable and no other facility is within reach: A new route and schedule are 
generated (also without considering parking availability) starting from the exit of the parking 
facility where the driver is currently at. No cost or time penalties are applied. 

Parking is unavailable and no other facility is within reach: It is assumed that the driver spends 
0.5 hours searching for parking, so a 0.5h time penalty is imposed. It is also considered that the 
driver is likely to park at an unofficial parking location, so a cost penalty is applied. A new route 
and schedule are generated (also without considering parking availability) starting from the 
entrance of the parking facility where the driver is currently at. The required rest is taken at the 
current location as if it was an unofficial parking. 

In these experiments, the cost was measured in hours, so the cost penalty is also converted to 
hours. As it is hard to estimate the cost of the financial risk a driver is undertaking every time 
he/she parks illegally, a sensitivity analysis is performed with multiple penalty values. The 
values tested are: 2h, 4h, 6h, 8h, and 10h. For comparison, considering an hourly marginal cost 
of operation of $71.78 (Murray and Glidewell 2019), the 4h (∼$287) penalty is comparable to 
the fine for non-emergency stops on freeways in California (∼$238) (Judicial Council of 
California 2019), and factoring in accident risks would increase penalties further. The risk of 
getting involved in an accident or being fined varies with the region, route, time of day, and 
type of vehicle, as do accidents’ average severity and cost. Nevertheless, when accidents do 
happen, costs can be substantial. In 2005, the average cost of truck crashes was $91 thousand 
overall, $195 thousand for injury crashes, and $3.6 million for crashes involving fatalities 
(Zaloshnja and Miller 2007); around 1.2 thousand, 2.7 thousand and 50 thousand hours of 
operation, respectively. The costs presented in (Zaloshnja and Miller 2007) are in 2005 dollars, 
and were calculated using 2002 values for the Value of Statistical Life; current values should be 
significantly higher. Therefore, a 1% accident probability would result in penalties higher than 
12 hours, already exceeding the tested penalties. 

Other indirect costs may include a drop in driver satisfaction, higher insurance premiums, loss 
of clients, etc. Data on all these factors are required for a company to accurately estimate the 
financial risks of illegal parking. In our experiments, we assigned the same penalties to all 
locations, but, with enough data, appropriate values can be set for each region/location. 

Results 

Estimated Cost of Disregarding Parking Information 

Figure 116 shows the average costs (after adjustments by the recourse function) of trips that 
are planned without taking into account parking availability information. Both the single client 
(Figure 116a) and the two client (Figure 116b) cases are shown. In the scenarios tested, the 
average costs did not vary with the alternative routes’ average speed, so only the plots for 
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75km/h are shown, the others can be assumed equal. This result is likely caused by the network 
used, and is discussed later in Rerouting behavior. Figure 117 shows the average trip cost when 
parking availability information is considered during planning. In this case, as we assumed that 
parking availability is guaranteed within the time-windows, the schedules generated are always 
feasible and no penalty or rerouting is required. Therefore, the trip cost equals the trip 
duration. 

When comparing the plots in Figure 116 and Figure 117, it can be seen that the advantage of 
considering parking availability information varies substantially with the scenario and penalties 
considered. As previously stated, stopping early to guarantee appropriate parking affects driver 
productivity (Boris and Brewster 2018). The same is true for extending rest periods to 
guarantee parking at the next facility. The following question can be raised. Which one is more 
expensive: waiting longer to guarantee appropriate parking, or the financial risks of allowing 
irregular parking? 

When parking is abundant (wide time-windows), accounting for parking availability information 
is always beneficial, as the extra waiting times are not significant. However, as parking becomes 
scarce, the effect of the waiting times required to guarantee parking can be considerable, 
especially if alternative routes are slow or nonexistent. Stricter constraints cause longer waiting 
times and, consequently, higher costs. This effect can be seen on the cost increase caused by 
narrowing time-windows, and by adding a second client. 

Nevertheless, situations with strict constraints are when drivers need the most help. In these 
cases, the financial risk of illegal parking is the defining factor. Focusing on the more restrictive 
two-clients scenarios of Figure 116b and Figure 117b, it can be seen that whether using parking 
information is cheaper or not, depends on the penalty values considered. For example, if 
drivers are fined every time they park illegally, but the region they work at is very safe and no 
accidents or robberies happen, it would put the penalty for illegal parking at around 4h of 
operation (assumptions explained in the section Estimating the cost of disregarding parking 
information), i.e., the yellow bar with small circles on Figure 116b. In this particular case, if 
parking is very scarce along the main route (narrow time-windows) it is cheaper to consider 
parking information only if the travel speed of the alternative routes is 75km/h. If the 
alternative routes are slow, the driver would likely prefer to park illegally and pay the fines. 

The difficulty in accurately gauging this risk may lead drivers and companies to mistakenly 
assume that it is cheaper to disregard parking constraints. Although these penalties are very 
hard to estimate, the litigious environment that the trucking industry has been facing is pushing 
these costs up (Lysiak 2019). Some insurance companies are already pushing their clients for 
the adoption of safety technologies, such as collision avoidance or camera systems, and legal 
parking planning practices may be a good complement to the industry’s safety standards. 
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Figure 116. Average trip cost (when disregarding parking information) for different irregular 
parking penalties according to the type of parking availability time-windows considered for 
the main route. In this experiment, the results did not vary with the alternative routes’ travel 
speed so the plots for other speeds were omitted. 

 

Figure 117. Average trip cost/duration (when using parking information for planning) 
according to parking availability time-windows (main route) and travel speed (alternative 
routes) used. 

Rerouting behavior: We expected that in some cases the HOS constraints would force the 
driver to take an alternative route when rerouting. However, in the tested scenarios, whenever 
parking is unavailable the driver does not have enough remaining driving time to reroute and 
head for a different parking facility. This causes the driver to use irregular parking instead of 
rerouting. After resting, the driver is less likely to take an alternative route due to HOS 
constraints. As this happens for all alternative route speeds, the average cost does not vary 
with the speed parameter. 

 

 (a) Single client (b) Two clients 

 

 (a) Single client (b) Two clients 
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Effect on Shortest Path 

Single Client  
Figure 118, Figure 119 and Figure 117a show how often alternative routes are used and how 
the average driving time and average trip duration vary with the parameters used for each 
scenario. It can be seen that when the main route has wide or medium parking time-windows, 
there is little or no benefit in taking alternative routes. In these cases, the main route has 
enough parking availability and alternative routes are rarely used. However, this does not hold 
anymore when the parking availability time-windows are narrow. When parking is scarce on the 
main route, alternative routes can significantly lower costs. The usage of alternative routes is 
more pronounced when their travel speed does not differ much from the main one’s, but it can 
still be seen even when the speed is lower. 

It is also important to note that the averaging dilutes the contribution of the instances that 
used the alternative paths. For example, Figure 118 shows that alternative routes are used only 
60% of the time when the time-windows are narrow and the speed is 70km/h, so the ∼ 2ℎ 
improvement in cost seen in Figure 117a is actually caused by only half of the instances. 
Similarly, the ∼ 0.5ℎ increase in driving time seen in Figure 119 is also caused by only half of 
the instances. So, in the end, there are 60 instances where paths are, on average, ∼ 1ℎ longer, 
but still generate costs ∼ 4ℎ shorter on average. 

When more restrictions are applied and the problem complexity increases, the benefits of 
considering multiple paths become more evident, as can be seen on the case with two clients. 
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Figure 118. Number of instances that used alternative routes for the single client case, 
according to the time-windows (main route) and travel speed (alternative routes) used. 
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Figure 119. Average driving time of solutions for the single client case, according to the time-
windows (main route) and travel speed (alternative routes) used. 

Two Clients 
Figure 120, Figure 121 and Figure 117b show how often alternative routes are used and how 
the average driving time and average trip duration vary with the parameters used for each 
scenario. In this case, the advantage of considering alternative routes is clear and they are used 
significantly more often when the time-windows are medium or narrow. Even in the case where 
the travel speed of the alternative routes is 65km/h and the average driving time is increased 
by more than 1 hour, there is an improvement of almost 5 hours to the average trip duration. 

As expected, the benefits of considering alternative routes increase when they are not 
significantly longer than the main route and when the main route has limited parking 
availability. Moreover, it is important to note that alternative routes can also impact problem 
feasibility. In these experiments, the planning horizon is set high enough so that all instances 
would have a feasible solution. However, many of the solutions with larger costs could become 
infeasible with a shorter planning horizon. 

When solving the VRP, the shortest paths are usually assumed known, so no alternative paths 
are considered when running the scheduling subroutines. As parking availability is usually not 
considered, these methods would be expecting the trip cost/duration to be similar to the values 
for wide parking availability time-windows shown in Figure 117. However, depending on the 
severity of the region’s parking shortage, a driver that attempted to plan the trip accounting for 
parking availability could face considerably larger costs like the ones shown for narrow parking 
time-windows. With the worst cost happening if the driver tried to stick to the exact path 
considered by the company (bars for ‘Only Main Route’ case in Figure 117). Drivers that do not 
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consider parking when planning would be subjecting themselves to safety risks as the ones 
estimated in Figure 116. In either case, the trip costs used by VRP algorithms that do not 
consider parking availability and that assume a fixed path between any two clients can be a 
complete misrepresentation of the costs the driver or company will actually experience. 

 

Figure 120. Number of instances that used alternative routes for the two clients case, 
according to the time-windows (main route) and travel speed (alternative routes) used. 
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Figure 121. Average driving time of solutions for the two clients case, according to the time-
windows (main route) and travel speed (alternative routes) used. 

Randomized Networks Experiments 

In this section we present experiments measuring the performance of the algorithm on 
randomly generated networks. The first experiment focuses on networks with a small number 
of clients and a large variation on the driving time required to reach the last client. The second 
experiment focuses on varying the number of clients with narrower range of driving times. 

Setup 

The graphs were created with the following characteristics 

• Network organized in layers. 

• Random number of layers between consecutive clients. 

• Random number of nodes per layer. 

• Every node has a fixed probability of having an edge linking it to each node of the 
following layer. 

• Every node that has an incoming edge, has at least one outgoing edge. 

• Branches leading to TPLs are inserted randomly along each edge according to a Poisson 
process. 

• Multiple values for the average spacing between TPLs were tested. 

• Multiple values for the probabilities of a TPL having a narrow, medium or wide 
availability window were tested. 
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For each graph, five possible parking shortage levels, with increasingly strict parking conditions, 
were tested. The parking shortage levels in Table 25 define the probability of each TPL having a 
Narrow, Medium or Wide time-window. These three types of time-windows are defined in 
Table 23. For each graph and parking shortage level, 20 problem instances were generated. All 
clients have daily time-windows from 9:00 to 17:00. The algorithm’s tolerance is set to find 
solutions within 0.25 hours of optimality. 

Table 25. Parking Shortage Level 

 Probability of each type of time-window 

Parking Shortage Level Narrow Medium Wide 

1 0.1 0.2 0.7 

2 0.2 0.3 0.5 

3 0.33 0.33 0.34 

4 0.5 0.3 0.2 

5 0.7 0.2 0.1 

Table 26 Random Networks Configurations 

Avg. Spacing (km) Graphs Total Instances 

50 84 8400 

100 86 8600 

150 67 6700 

Experiment 1 

In this experiment, we studied how the parking shortage affects total trip duration, and our 
algorithm’s performance in networks of varying sizes. Note that our focus is long-haul trucking; 
drivers travel long distances to visit a relatively small number of clients. When studying larger 
networks, our interest is in varying the trip duration, the number of possible paths and the 
number of TPLs along each path. The number of TPLs varies from 0 to 288, the total driving 
time of the solutions found for each instance varies from 3.3 to 60.7 hours, and the total 
number of clients varies from 1 to 5. Table 26 presents the average spacing between TPLs used 
to generate the test networks, as well as how many networks were created with each spacing 
value. 

Performance 

We implemented our algorithm in Python 3.8, and all experiments were run on a Intel Core i5, 
3.1GHz CPU with 8Gb of RAM. We would like to note that the obtained running times could be 
reduced by implementing the algorithm in faster languages, such as C, C++ or Java, however, 
this is not the focus of this work. Figure 122 shows how the average running time varies with 
the solutions’ total driving time and the total number of TPLs present in each instance. Both the 
number of TPL choices and the number of rests that need to be scheduled increase the 



 210 

problem’s complexity, so we concluded that this was the most meaningful way of presenting 
the results. The method still presents some scalability issues, with running times increasing 
sharply when trips approach the weekly driving limit and a large number of TPLs is considered. 
Nevertheless, most scenarios tested have an average running time below 200 seconds, which is 
reasonable for a truck driver planning his itinerary for the following week. Also, although the 
current performance does not allow for this method to be used at every iteration of a VRTDSP 
algorithm, it can still be used as a method to refine the final routes chosen. 

We also noticed that the time windows can significantly affect running time. Depending on the 
parking shortage level and instance considered, the same network may have vastly different 
running times. 

 

Figure 122. Average running time over randomized networks. 

Parking Shortage’s Impact 

Table 27 presents the percentual increase in trip duration of instances with parking shortage 
level 2 to 5 relative to level 1 instances. Level 5 instances have 5.1% higher trip duration overall, 
and even considering only instances with an average spacing of 50km between TPLs the 
increase is 2.3%, which is not negligible given the trucking industry’s size. The case study 
presented in the section Case Study illustrated how parking availability conditions can have a 
significant impact on trip durations. This experiment over randomized networks further 
supports this claim, by showing that significant impacts are seen even on more complex 
networks. 
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Table 27. Average Trip Duration Increase 

 Parking Shortage Level 

Avg. Spacing (km) 1 (baseline) 2 3 4 5 

50 0% +0.2% +0.8% +1.3% 2.3% 

100 0% +0.7% +1.4% +2.5% 4.2% 

150 0% +0.6% +2.7% +5.9% 8.3% 

200 0% +0.9% +3.5% +5.6% 7.1% 

Overall 0% +0.6% +1.9% +3.4% +5.1% 

Experiment 2 

This experiment focuses on studying how the algorithm behaves when the number of clients is 
increased. As stated previously, our focus is on long-haul, which implies a small number of 
clients visited over a long trip, so the scenarios tested in this experiment diverge from our 
intended use case. In order to avoid the effects of driving time (and number of TPLs) on the 
running time, shown in Figure 122, the networks used have driving times around 30-40 hours, 
and the number of clients varies from 1 to 46 with zero service time. Therefore, the average 
distance between clients decreases as the number of clients increases. These networks have 
only 1 intermediate layer between clients, so there are not many possible routes before 
accounting for the detours necessary to reach TPLs. The average spacing between TPLs is set to 
100 km and most networks tested have between 20 and 40 TPLs. Experiment 2 was run in the 
same computer as experiment 1. 

Figure 123, Figure 124, and Figure 125 show how the running time varies with the number of 
clients, trip duration, off-duty time, and driving time. In Figure 123, we see that having to 
accommodate constraints of a larger number of clients in a relatively short trip causes large 
increases in trip duration despite similar driving times. We believe that the number of clients’ 
effect on running time is caused mostly by this increase in trip duration. Figure 123 and Figure 
124 show that the scenarios with larger trip duration and off-duty times are also the ones with 
higher running times, possibly due to needing to schedule a larger number of rest stops or 
testing longer rest duration values for each stop. Similarly, Figure 125 shows that running time 
increases with the off-duty time ratio, and also that the off-duty time ratio increases with the 
number of clients. 

A point worth noting is that this type of scenario with a large number of clients close to each 
other does not fit long-haul trucking usual jobs, it might be closer to what happens in local 
trucking, where drivers stay within a smaller region. However, in the U.S., short-haul drivers 
that operate within a 150 air-mile radius of their normal work reporting location are subject to 
different, less restrictive, regulations (Code of Federal Regulations, n.d.). As clients are expected 
to be widely spaced and require non-negligible service time in the context of long-haul trucking, 
we judge that the limiting factor for our problem is not the number of clients, but the trips’ 
expected driving/on-duty time, duration and the number of TPLs and paths considered during 
planning (as seen in Figure 122). 
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Figure 123. Average running time for instances with varying number of clients and cost (trip 
duration in hours). 

 

Figure 124. Average running time for instances with varying driving and off-duty time. 
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Figure 125. Average running time for instances with varying number of clients and off-duty 
time ratio (off-duty time/trip duration). 

Conclusion 

In this study, we introduced the shortest path and truck driver scheduling problem with parking 
availability constraints (SPTDSP-PA), which integrates parking availability information into the 
path planning and scheduling of long-haul truck shipments. A resource-constrained shortest 
path formulation is proposed, and a tailored label-correcting algorithm is developed to solve it 
by efficiently exploiting the problem’s particularities. 

We performed a case study on a network based on the US I-5 freeway, under various parking 
availability conditions and alternative routes’ speed. The results show that, as expected, the 
cost of imposing parking constraints increases as parking availability decreases. Therefore, 
illegal parking costs are the deciding factor when evaluating the profitability of imposing 
parking constraints. Depending on the illegal parking penalties considered, the cost savings 
from preventing said penalties can exceed, or at least offset, the cost increase caused by 
parking constraints. Due to the high direct and indirect costs of truck-related accidents, we 
believe that these penalties are likely high, and that safer parking practices would benefit the 
trucking industry not only from a safety standpoint, but also from an economic standpoint. To 
illustrate the importance of considering parking information when defining the paths between 
clients, we studied how parking availability and alternative paths affect trip costs. Considering 
alternative paths by using the SPTDSP-PA formulation instead of only solving a truck driver 
scheduling problem can mitigate cost increases due to parking constraints and significantly 
change estimated trip costs. 

Experiments on randomly generated networks showed that, even on networks with more 
alternative paths and parking options, limited parking availability can have a non-negligible 
impact on trip duration. In addition, this impact increases substantially in networks where 
parking facilities are scarcer. The cost/duration increase caused by imposing parking availability 
constraints can be seen as an estimate of how much drivers and companies would need to 
spend in order to ensure safe itineraries for the drivers, and prevent accidents and other costs 
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related to the difficulty of finding appropriate rest locations. By simulating how parking 
availability can affect trip duration, costs, and illegal parking, our model can aid in infrastructure 
and policy decisions. In future work, we intend to extend the model to include time-dependent 
travel times in order to account for the effects of traffic congestion.  
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Long Haul Battery Electric Truck Planning 

The electrification of transport is seen as one of the main paths for emissions reduction. With 
the increase in performance and variety of EV models in the market, it becomes vital to develop 
ways to incorporate them into our society efficiently. However, despite continuing interest and 
investments to promote electric vehicles in goods movement, electric trucks still face many 
challenges to achieve meaningful market penetration, including limited range, long refueling 
time, and reduced maximum payload. Research on how to coordinate electric trucks’ range and 
recharging limitations with regulation requirements and charging/parking infrastructure 
availability can reduce the performance gap between electric and diesel trucks, and promote 
the adoption of electric vehicles by the trucking industry. 

Among the concerns regarding heavy-duty vehicles electrification are the reduced range, longer 
recharge time and the reduction in maximum payload due to added battery weight. However, it 
is often overlooked that commercial drivers are required to stop and rest regularly regardless of 
the vehicle’s range. Even if long-haul trucks drive on average 600 miles per day (Smith et al. 
2019), they are required to stop for at least 30 minutes every 8 hours and for at least 10 hours 
after 11 hours of driving time. Adequate infrastructure and efficient trip planning can mitigate 
the range issue by recharging the vehicle during mandatory stops. Nevertheless, recharging 
does take longer than refueling and charging stations are not abundant, making charging 
station availability an issue for battery electric trucks (BETs). 

In this section, we integrate availability information (both for parking and charging) in the 
planning process for BET, thus coordinating the needs of off-duty and recharge time for BETs. In 
particular, we investigate how the effects of parking availability constraints on BETs compare to 
their effects on diesel trucks. Our goals are: 

• Incorporate battery charge constraints in our shortest path and truck driver scheduling 
model. 

• Study how BETs and diesel trucks’ trip cost and duration compare under different 
parking conditions. 

Section based on the publication: 

F. Vital, and P. Ioannou, "Effects of Working Hour Regulations and Parking Shortages on Truck 
Electrification," 2021 IEEE 24th International Conference on Intelligent Transportation Systems 
(ITSC). 

Introduction 

Transportation electrification is seen as one of the main paths for emissions reduction. Electric 
vehicles (EV) have been receiving increasing attention in recent years. With the increase in 
performance and variety of EV models in the market, it becomes essential to study how to 
efficiently incorporate them into our society. 

BETs are expected to be more efficient than diesel trucks and have lower operational costs 
(Sripad and Viswanathan 2019). Studies regarding the viability of battery electric trucks (BETs) 



 216 

show promising results; however, concerns regarding reduced payload, limited range, long 
recharge time, and the required supporting infrastructure were raised (Mareev, Becker, and 
Sauer 2018; Earl et al. 2018; Çabukoglu et al. 2018; Liimatainen, van Vliet, and Aplyn 2019; 
Sripad and Viswanathan 2019; Smith et al. 2019). Current powertrain efficiency and battery 
density make it so large batteries are required for long-range trips. As trucks are subject to 
weight constraints, the battery weight reduces max payload. Moreover, large capacity batteries 
take longer to charge. 

When accounting for the fact that drivers need to rest due to regulations, the recharge time 
issue might not be as pronounced. Drivers are required to rest regularly due to hours-of-service 
(HOS) regulations. If drivers can use the mandatory rest stops to recharge, the increase in trip 
duration due to recharge times can be reduced or eliminated. The synchronization of rest and 
recharge times was studied for single-day trips by Schiffer et al. (Schiffer et al. 2017), showing 
improvements for BETs. A study by Mareev et al. (Mareev, Becker, and Sauer 2018) used EU 
regulations to help estimate costs for long-haul BETs. Mareev used the EU regulation to 
generate a regulation-compliant baseline driving cycle. However, in practice, the trip’s schedule 
depends on both clients and charging stations; thus, it can differ significantly from the 
regulation’s minimum requirements. 

Studies also overlooked the problem of parking availability. Due to limited infrastructure, BETs 
may face difficulties finding available recharging stations. However, diesel trucks are not 
entirely free of such worries. Currently, the large number of trucks already causes truck parking 
shortages, forcing drivers to adjust their schedules to find appropriate parking or face the risks 
of illegal parking (U.S. Department of Transportation 2015). In (Vital and Ioannou 2019; 2020), 
Vital and Ioannou studied the problem of including both parking availability information and 
HOS regulations in the planning of long-haul transportation, but those studies do not cover 
electric vehicles. 

Planning for freight transport electrification requires a good understanding of BET operations’ 
performance and cost under realistic scenarios and how each scenario affects BET usage’s 
minimum requirements. These scenarios include the need for drivers to adapt their schedules 
to fulfill client restrictions, HOS regulations, parking availability, and charging needs. In this 
project, we study how the performance gap between BETs and diesel trucks is affected by 
practical constraints such as HOS regulations and limited parking availability. The paper is 
organized as follows: Section USA’s Hours of Service Regulations describes the HOS regulations 
considered. Section Consumption Models describes the models used to estimate energy/fuel 
consumption and emissions. Section Problem Description describes the mathematical model 
used for BET trip planning under HOS and parking constraints. Sections Case Study and 
Experiments on Random Networks describe the experiments performed and their results. 
Section Conclusion presents the conclusion. 

USA’s Hours of Service Regulations 

The USA HOS regulation restricts for how long drivers can drive/work, and how long they 
should rest before being allowed to drive again. We refer to the off-duty periods required by 
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the regulation based on their minimum duration: breaks (0.5 h), daily rests (10 h) and weekly 
rests (34 h). The USA HOS regulation can be summarized as follows (Federal Motor Carrier 
Safety Administration 2021): 

• 11-hour Driving Time Limit: A driver may drive at most 11 hours between 2 consecutive 
daily rests. 

• 14-Hour Elapsed Time Limit: A driver cannot drive after 14 hours have elapsed since the 
last daily rest ended. 

• Rest Breaks: A driver must take a break after 8 cumulative hours of driving time. Recent 
changes in the regulation allow this constraint to be satisfied by any non-driving period 
of 30 consecutive minutes. 

• 60-Hour Limit: A driver cannot drive after having been on duty for 60 hours in any 
period of 7 consecutive days. The 7 days period can be reset by taking a weekly rest. 

We do not consider the sleeper berth provision, which allows daily rests to be split. And, for the 
60-hour limit, instead of restricting the on-duty time over any period of 7 consecutive days, the 
on-duty time between two consecutive weekly rests was restricted to 60 hours. 

Consumption Models 

The energy/fuel consumption depends on the activity being considered, so we separate the 
model in three cases: driving, idling and charging (BET only). The model parameters considered 
are listed in Table 28. 

Driving 

The consumption models used are based on models found in the literature ((Bektaş and 
Laporte 2011; J. Lin, Zhou, and Wolfson 2016; Earl et al. 2018; Sripad and Viswanathan 2017; 
Gao, Lin, and Franzese 2017) for BETs, and (Wang and Rakha 2017) for diesel trucks). Both 
models first estimate the vehicle’s power demand due to resistance forces acting on the 
vehicle, then estimate the consumption rate based on the power demand. We consider the 
average travel speed over each road section, and terms relative to acceleration and road grade 
were omitted. 

BETs 
Let 𝑃𝐵(𝑣) be the power demand (in 𝑘𝑊) to the battery due to the forces acting against the 
truck’s movement, accounting for the battery to wheel efficiency, and 𝜁𝐵(𝑣) be the rate of 
energy consumption per unit of distance traveled (in 𝑘𝑊ℎ/𝑘𝑚) defined as follows: 

 
𝑃𝐵(𝑣) = (

𝜌𝐴𝐶𝐷
25.92

𝑣2 +𝑚𝑔𝐶𝑅)
𝑣

3600𝜂𝑏𝑤
 

(129) 

 
𝜁𝐵(𝑣) =

𝑃𝐵(𝑣) + 𝑃𝑎
𝑣

 
(130) 
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where 𝐶𝐷 and 𝐶𝑅 are the coefficients of drag and rolling resistance, respectively. The air density 
(𝑘𝑔/𝑚3) is given by 𝜌, and the acceleration due to gravity is given by 𝑔. The terms 𝑣, 𝑚 and 𝐴 
represent the truck’s speed (𝑘𝑚/ℎ), mass (𝑘𝑔) and frontal area (𝑚2), respectively. 𝜂𝑏𝑤 
represents the battery-to-wheels efficiency, and 𝑃𝑎 is the power demand from the vehicle’s 
accessories and support systems, e.g., A/C, lighting, electric steering system. The battery level 
cannot be negative, so any displacement requiring more energy than currently stored in the 
battery is considered infeasible. 

Diesel Trucks 
For diesel trucks, we used the model presented by Wang and Rakha in (Wang and Rakha 2017). 
More specifically, the parameters used are the ones for a convex model of a Freightliner/FLD 
120, year 2001, labeled as “HDDT8” in their paper. This model characterizes fuel consumption 
as a second-order polynomial function of the power demand, as follows: 

 
𝑃𝐷(𝑣) = (

𝜌𝐴𝐶𝐷
25.92

𝑣2 +𝑚𝑔𝐶𝑅(𝑐1𝑣 + 𝑐2))
𝑣

3600𝜂𝑑
 

(131) 

 
𝜁𝐷(𝑣) = (𝛼0 + 𝛼1𝑃𝐷(𝑣) + 𝛼2𝑃𝐷(𝑣)

2)
3600

𝑣
 

(132) 

where, similarly to (129) and (130), 𝑃𝐷(𝑣) represents the power demand (𝑘𝑊), and 𝜁𝐷(𝑣) 
represents the fuel consumption per distance (𝐿/𝑘𝑚). 𝐶𝑅, 𝑐1 and 𝑐2 are the rolling resistance 
parameters (unitless), 𝜂𝑑 is the driveline efficiency (unitless), 𝛼0, 𝛼1 and 𝛼2 are vehicle-specific 
model coefficients calibrated in (Wang and Rakha 2017) using empirical data. The remaining 
parameters are defined as in (129). 

Idling 

When ‘idling’, we consider a fixed consumption rate 𝑃𝐼 (𝑘𝑊) for BETs and 𝐹𝐼 (𝐿/ℎ) for diesel 
trucks. We assume that 𝑃𝐼 is smaller than 𝑃𝑎 as some systems, such as electric steering, might 
be inactive when the vehicle is stopped. For BETs, we assume that chargers can provide power 
to these support systems on top of charging needs and idling consumption is not subtracted 
from the charging rate at charging stations. However, when estimating emissions, idling 
consumption is included in the energy expenditure. 

Charging 

BETs can recharge their batteries at charging stations located on the road network (and possibly 
clients with charging infrastructure). We consider a finite battery capacity 𝐵 (in 𝑘𝑊ℎ), and, for 
each charging station ℓ, a constant charging rate 𝛾ℓ (in 𝑘𝑊). The battery cannot store more 
energy than its capacity, so we assume that the battery will stop charging when full. 
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Table 28. Model Parameters 

Battery Electric Truck 

Parameter Description Value 

CD (Sripad and Viswanathan 2017) coefficient of drag 0.63 

CR (Sripad and Viswanathan 2017) coefficient of rolling resistance 6.3E-3 

ηbw (Sripad and Viswanathan 2017) battery-to-wheels efficiency 0.85 

m (kg) (Sripad and Viswanathan 2017) truck’s total mass 3.6E4 

Pa (kW) (Smith et al. 2019) support systems power demand 10 

PI (kW) idling power demand 3 

A (m2) (Sripad and Viswanathan 2017) truck’s frontal area 7.2 

Diesel Truck 

CD (Wang and Rakha 2017) coefficient of drag 0.78 

CR (Wang and Rakha 2017) coefficient of rolling resistance 1.25E-3 

c1 (Wang and Rakha 2017) coefficient of rolling resistance 0.0328 

c2 (Wang and Rakha 2017) coefficient of rolling resistance 4.575 

ηd (Wang and Rakha 2017) driveline efficiency 0.94 

m (kg) (Wang and Rakha 2017) truck’s total mass 3.6E4 

A (m2) (Wang and Rakha 2017) truck’s frontal area 10 

α0 (Wang and Rakha 2017) vehicle-specific model coefficient 2.16E-3 

α1 (Wang and Rakha 2017) vehicle-specific model coefficient 7.98E-5 

α2 (Wang and Rakha 2017) vehicle-specific model coefficient 1.0E-8 

FI (L/h) (U.S. Department of Energy 2015) idling fuel consumption 3 

General 

g(m/s2) (Wang and Rakha 2017) gravity 9.8066 

ρ(kg/m3) (Sripad and Viswanathan 2017) air density 1.2256 

βd(kg/L) (U.S. Energy Information 

Administration 2016; Argonne National 

Laboratory 2020) 

CO2 emission factor for diesel 3.13 

βe(kg/kWh) (Argonne National Laboratory 

2020) 

CO2 emission factor for electricity in 

California 

0.2 

Problem Description 

The problem consists of planning the path, travel speed and duration of rest and recharge stops 
of a single battery-electric truck from origin to destination with required stops at an ordered set 
of client locations. The solution must comply with the USA HOS regulations, and satisfy battery 
level, delivery time and parking availability constraints. This problem is a variant of the SPTDSP-
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PA (shortest path and truck driver scheduling problem with parking availability constraints), 
which was introduced in (Vital and Ioannou 2020). This variant differs mainly in the inclusion of 
factors relevant to EV planning, i.e., finite battery capacity, partial recharges, speed-dependent 
energy consumption, and speed control. 

The problem is solved over a simplified road network that includes only the main routes the 
truck can take between two consecutive client locations, and the rest areas and charging 
stations around them. The simplified road network is defined as an acyclic directed graph 𝐺 =
(𝑉, 𝐴), where 𝑉 is the set of nodes of the graph and 𝐴 is the set of edges. Each road section 

(𝑖, 𝑗) ∈ 𝐴 has a fixed length 𝑑𝑖𝑗 and an allowed speed range [𝑠𝑖𝑗
−, 𝑠𝑖𝑗

+], thus setting the allowed 

travel time to [
𝑑𝑖𝑗

𝑠𝑖𝑗
+ ,

𝑑𝑖𝑗

𝑠𝑖𝑗
− ]. The speed limit is considered constant within each road section, but the 

average travel speed can be adjusted within the allowed range to control the travel time and 
energy consumption. The vehicle has a finite battery capacity and the energy models used to 
calculate the energy consumption and recharge rates are described in the section Consumption 
Models. The battery can only be recharged at charging stations, which can be either rest areas 
or client facilities with charging infrastructure. 

During long trips, HOS regulations require drivers to rest along the way. Rest stops are 
restricted to rest areas and their minimum durations are defined by the regulation. We do not 
allow for rests to be taken at client locations. However, note that service times longer than 
30min can reset the 8h driving limit constraint despite counting as on-duty time for other 
constraints. Each parking location has a set of time-windows representing the intervals when 
parking spaces are expected to be available. These time-windows restrict the vehicle’s arrival 
time. The vehicle is not allowed to arrive early and wait. The regulation sets a minimum 
duration for the rest stops, but it does not set a maximum duration, so the driver is allowed to 
extend the stay when convenient. Similarly, each client has a set of time-windows constraints 
and a service time, which define when the truck can arrive at the client and the duration of 
stay. However, drivers cannot extend the service time at the client. As rest areas are not 
required stops, the graph 𝐺 is built so that rest areas can be bypassed. Clients are mandatory 
stops, so all considered routes go through the client nodes. 

Our model is based on the resource constrained shortest path problem formulation presented 
by Vital and Ioannou for the SPTDSP-PA (Vital and Ioannou 2020). Time and counters for the 
different HOS regulations are treated as resources, and an extended network is used to 
explicitly represent drivers’ possible activities. We use the extended network proposed in (Vital 
and Ioannou 2020), which is described in the section Extended Network. The extended network 
edges also store charging parameters. Subsection System Equations describes how the system 
equations were updated to include battery level as a resource. Section Dynamic Programming 
Formulation and Rollout Algorithm describes the rollout algorithm used to approximately solve 
the problem. 
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Extended Network 

At the origin, client locations and rest areas/charging stations, drivers perform non-driving 
activities. These nodes are expanded according to the subnetworks in Figure 126, forming an 
extended network 𝐺′ = (𝑉′, 𝐴′) that includes non-driving activities explicitly in the graph. 
Figure 126 shows the subnetworks that replace the nodes being expanded. Each edge has its 
activity indicated below the arrow. Edges that have a fixed duration have their duration 
indicated above the arrow. The incoming/outgoing edges of the subnetwork are the 
incoming/outgoing edges of the node being expanded. 

Rest Areas/Charging Stations: HOS regulations are affected differently by rests of different 
durations, so each branch of this sub-network models rests with similar effects. They are break, 
daily rest and weekly rest, which have minimum durations of 𝑡𝑏, 𝑡𝑟 and 𝑡𝑤, respectively. Figure 
126a shows the sub-network representing the node after expansion. The duration of the 
second half of each path is a decision variable used to model rest time beyond the minimum 
required. Each edge also stores information regarding charging capabilities, i.e., whether it is a 
charging station or not, and the charging rate. 

Origin: This expansion, shown in Figure 126b, is used to model the vehicle’s departure time. 
Departure time constraints are modeled as time-window constraints at the departure node 
𝑣𝑑𝑒𝑝. 

Clients: This expansion is used to model the service time at each client, and is shown in Figure 
126c. A priori we consider that vehicles cannot recharge at client locations and that the idling 
consumption rate is the same for all client locations, but charging and energy consumption 
information can also be stored in the service edges to customize behavior at each client. 
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Figure 126. Sub-networks used to model non-driving activities. 

System Equations 

We consider the system’s state as being a vector 𝑥𝑘 = (𝑣𝑘, 𝜃𝑘), where 𝜃𝑘 =

(𝜂𝑘
0, 𝜂𝑘

𝑏 , 𝜂𝑘
𝑟 , 𝜓𝑘

𝑟 , 𝜓𝑘
𝑤 , 𝑏𝑘) containing the current location of the truck (𝑣𝑘) and the current 

resource values (𝜃𝑘). The resources are responsible for tracking the HOS restrictions, battery 
level and arrival time at each node. The resources used are: 

• Time when node was visited 

• Accumulated driving time since last break 

• Elapsed time since last daily rest 

• Accumulated driving time since last daily rest 

• Accumulated on-duty time since last weekly rest 

• Battery level 

The evolution of the system is described by 𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑢𝑘) , where 𝑥𝑘 is the current state, 
𝑥𝑘+1 is the next state, and 𝑢𝑘 is the decision taken. The decision 𝑢𝑘 is composed by an edge 
𝑒𝑘 = (𝑣𝑘, 𝑣𝑘+1) ∈ 𝐴′, with length 𝜇𝑘, and a duration 𝛿𝑘 included in 𝑒𝑘’s allowed duration set. 
When dealing with edges related to driving, this set is defined by the length and allowed speed 
values of 𝑒𝑘. The function 𝑓(𝑥𝑘, 𝑢𝑘) defines how each element of 𝑥𝑘 is affected by a decision 
𝑢𝑘. As different activities have different impacts on each resource, each edge of the extended 
network has an activity assigned to it. Table 29 shows how the resources are updated 

 

(a) Sub-network used to expand rest area nodes. 

 
 departure drive 

(b) Sub-network used to expand the origin node. 

 
 drive service drive 

(c) Sub-network used to expand client nodes. wi is the service time. 
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depending on the activity. The functions 𝑓𝑑, 𝑓𝑠, 𝑓𝑏, 𝑓𝑟, 𝑓𝑤 and 𝑓0 describe the update rules 
for activities drive, service, break, daily rest, weekly rest and departure, respectively. Figure 126 
shows how the activities are assigned to each edge. Note that 𝜂𝑏’s and 𝑓𝑏’s definitions differ 
from (Vital and Ioannou 2020) due to recent changes in the regulation. Now the 8h limit is 
applied to driving time instead of elapsed time, and any non-driving period longer than 30 
minutes can satisfy this constraint. 

Table 29. Resource Extension Functions 

 𝑓𝑑 𝑓𝑠  𝑓𝑏  𝑓𝑟 𝑓𝑤 𝑓0 

𝜂𝑘+1
0 =   𝜂𝑘

0
 +  𝛿𝑘   

𝑐𝑘+1 − 𝑐𝑘
= 

𝛼𝑑𝛿𝑘+ 𝛽𝑑μk 𝛼𝑠𝛿𝑘  𝛼𝑏𝛿𝑘  𝛼𝑟𝛿𝑘 𝛼𝑤𝛿𝑘 𝛼0𝛿𝑘 

𝜂𝑘+1
𝑏 = 𝜂𝑘

𝑏 + 𝛿𝑘   0  𝜂𝑘
𝑏 

𝜂𝑘+1
𝑟 = 𝜂𝑘

𝑟 + 𝛿𝑘   0 𝜂𝑘
𝑟  

𝜓𝑘+1
𝑟 = 𝜓𝑘

𝑟 + 𝛿𝑘  𝜓𝑘
𝑟   0 𝜓𝑘

𝑟  

𝜓𝑘+1
𝑤 = 𝜓𝑘

𝑤 + 𝛿𝑘   𝜓𝑘
𝑤  0 𝜓𝑘

𝑤  

𝑏𝑘+1 = 𝑏𝑘 − μ𝑘𝜁𝐵 (
μ𝑘
𝛿𝑘
) {

𝑚𝑎𝑥(𝐵, 𝑏𝑘 + 𝛿𝑘γ), 𝑖𝑓  𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  𝑏𝑘
− 𝛿𝑘𝑃𝐼,   𝑜/𝑤

 
𝑏𝑘 

Dynamic Programming Formulation and Rollout Algorithm 

Let 𝐽(𝑥𝑘) be the minimum cost to go from state 𝑥𝑘 to the destination, and 𝑋𝑑 the set of feasible 
states at the destination node. This cost-to-go function is defined as: 

 
𝐽(𝑥𝑘) = {

0, if 𝑥𝑘 ∈ 𝑋𝑑
min

𝑢∈𝑈(𝑥𝑘)
𝑔(𝑥𝑘, 𝑢) + 𝐽(𝑓(𝑥𝑘, 𝑢)),o.w. 

(133) 

where 𝑔(𝑥𝑘, 𝑢) is the cost accrued by decision 𝑢 at state 𝑥𝑘, and 𝑈(𝑥𝑘) is the set of decisions 𝑢 
for which 𝑓(𝑥𝑘, 𝑢) is a feasible state. A state is considered feasible if all resources are within 
their respective feasible ranges. If 𝑈(𝑥𝑘) is empty, we say that the destination cannot be 
reached from 𝑥𝑘 and 𝐽(𝑥𝑘) is infinite. The choice of 𝑔(⋅) determines what is being minimized. In 
this project, we use the trip duration as the objective to be minimized, but more complex 
objective functions can be used. For example, we can include the cost of energy and perform a 
multi-objective optimization that minimizes a weighted sum of the cost generated by the trip 
duration (driver’s hourly salary) and costs generated by energy expenditure. 

Although any node has only a finite number of outgoing edges, the decision space 𝑈(𝑥𝑘) can 
have uncountably many elements if the allowed duration set of one or more of these edges is a 
continuous interval. In order to mitigate this issue, we first propagate the constraints of each 
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node to all upstream nodes. This reduces the feasible space at each node and the decision 
space to be considered for each decision. During execution, the algorithm uses the 
preprocessed feasible ranges to generate a reduced decision space, which is then discretized, 
generating a finite set of decisions. Nevertheless, due to the curse of dimensionality, this 
approach does not scale well for large instances. Using a coarse decision space discretization 
can bring significant improvements to computation time, but will also cause the cost to 
deteriorate. Therefore, we use a rollout algorithm (D. Bertsekas 2017) to find suboptimal 
solutions while keeping the computational demand in check. The general idea is to use the cost 
obtained from applying a base policy as an approximate cost function, then use this 
approximation to generate a one-step lookahead policy. One-step lookahead policies choose 
the decision that minimizes the following expression: 

 min
𝑢𝑘∈𝑈(𝑥𝑘)

𝑔(𝑥𝑘, 𝑢𝑘) + 𝐽(𝑓(𝑥𝑘, 𝑢𝑘)) (134) 

where 𝐽(𝑥𝑘) is the approximated cost-to-go of state 𝑥𝑘. Let the policy 𝜋 be a function that 
returns a feasible decision 𝜋(𝑥𝑘) ∈ 𝑈(𝑥𝑘) for every state 𝑥𝑘. 𝐽𝜋(𝑥𝑘) is the cost-to-go when the 
policy 𝜋 is used to take decisions at every state, and it can be described as: 

 
𝐽𝜋(𝑥𝑘) = {

0, if 𝑥𝑘 ∈ 𝑋𝑑

𝑔(𝑥𝑘, 𝜋(𝑥𝑘)) + 𝐽𝜋 (𝑓(𝑥𝑘, 𝜋(𝑥𝑘))) ,     o.w.
 (135) 

In this project, we used 𝐽(𝑥) = 𝐽𝜋(𝑥), where 𝜋 is the policy generated by solving the problem 
with a coarser discretization of the decision space. The strategy used to propagate constraints is 
included in the section Constraint Propagation and Feasible Decision Space. Section Graph 
Preprocessing describes how the graphs were preprocessed to reduce issues with short links. 
Section Analytical Solutions and Section Cost Lower Bound show, respectively, analytical 
solutions and cost lower bounds that can be used to speed-up the algorithm. The cost lower 
bounds presented include cost functions that are a weighted sum of time and energy 
consumption, which are more general then the cost functions considered in our experiments. 

Constraint Propagation and Feasible Decision Space 

Consider the following expression describes how the states are updated: 

 𝑥𝑖+1 = 𝑓(𝑥𝑖, 𝑢𝑖),  𝑢𝑖 ∈ 𝑈𝑖(𝑥𝑖) ⊂ 𝑈𝑖 (136) 

Let 𝐹𝑖  represent the set of feasible states at node 𝑣𝑖. We define 𝑈𝑖(𝑥𝑖) as: 

 𝑈𝑖(𝑥𝑖) = {𝑢 ∈ 𝑈𝑖| 𝑓(𝑥𝑖 , 𝑢) ∈ 𝐹𝑖+1} (137) 

When choosing the decisions to test, we can either sample 𝑈𝑖 and check the feasibility of each 
decision or calculate the feasible decision space with an inverse function 𝑓−1(𝐹𝑖+1, 𝑥𝑖) that 
returns the elements of 𝑈𝑖 that can generate a next state in 𝐹𝑖+1. As most edges update the 
resources by adding its duration to the current resource, in general this operation consists of 
shifting the intervals representing the constraint for each resource, then taking the intersection 
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between all of them, e.g., if the next node has a time-window [10,15] and the current time is 5, 
then the decision duration must be in the interval [5,10] to be feasible. Different resources will 
generate different intervals, and feasible decisions must satisfy all of them. 

Originally, 𝐹𝑖  represents only the feasibility regarding the local constraints at node 𝑣𝑖, however, 
if we consider constraints from other nodes, we may be able to reduce 𝐹𝑖, and consequently 
reduce 𝑈𝑖(𝑥𝑖). Each node’s local constraints can be propagated downstream and upstream to 
reduce other nodes’ feasible spaces. 

Forward Propagation 

Let ℱ∗ (𝐹𝑖,  𝐹𝑗 , 𝑈𝑖(⋅)) represent a function that returns which states in 𝐹𝑗 can be reached from 

𝐹𝑖, i.e., 

 ℱ∗ (𝐹𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)) = {𝑥𝑗 ∈ 𝐹𝑗|∃𝑥𝑖 ∈ 𝐹𝑖 ,  ∃𝑢 ∈ 𝑈𝑖(𝑥𝑖),  𝑓(𝑥𝑖 , 𝑢) = 𝑥𝑗} (138) 

The set ℛ𝑗
∗ of states that can be reached at node 𝑣𝑗  is given by: 

 ℛ𝑗
∗ = ⋃ ℱ∗

𝑖, (𝑣𝑖,𝑣𝑗)∈𝐴

(𝐹𝑖 , 𝐹𝑗 , 𝑈𝑖(⋅)) (139) 

ℛ𝑗
∗ can be overly complex due to the coupling between resources, so we try to approximate it 

by propagating the constraints for each resource separately. Let 𝐹𝑖
(𝑟) be the projection of  𝐹𝑖  on 

the axis representing resource 𝑟, and 𝑓(𝑟) the component of 𝑓 that defines the evolution of 

resource 𝑟. Let ℱ(𝑟)(𝐹𝑖,  𝐹𝑗 , 𝑈𝑖) be a function that returns which values of resource 𝑟 can be 

reached at node 𝑣𝑗 , defined as follows: 

 ℱ(𝑟)(𝐹𝑖,  𝐹𝑗 , 𝑈𝑖) = {𝑥𝑗
(𝑟) ∈ 𝐹𝑗

(𝑟)|∃𝑥𝑖
(𝑟) ∈ 𝐹𝑖

(𝑟),  ∃𝑢 ∈ 𝑈𝑖,  𝑓
(𝑟)(𝑥𝑖

(𝑟), 𝑢) = 𝑥𝑗
(𝑟)} (140) 

Let ℛ̂𝑗 approximate ℛ𝑗
∗ as follows: 

 ℛ𝑖,𝑗 =∏ (ℱ(𝑟)(ℛ̂𝑖 ,  𝐹𝑗 , 𝑈𝑖))

𝑟

ℛ̂𝑗 =∏ ⋃ ℛ𝑖,𝑗
(𝑟)

𝑗, (𝑣𝑖,𝑣𝑗)∈𝐴𝑟

 (141) 

Where ℛ𝑖,𝑗 is approximation accounting only for the constraints of upstream node 𝑣𝑖, and 

ℛ𝑖,𝑗
(𝑟) is its projection on the axis representing resource 𝑟. Note that, for a given 𝑣𝑖  , if ∃𝑟 such 

that ℱ(𝑟)(ℛ̂𝑖, 𝐹𝑗 , 𝑈𝑖) = ∅ , then ℛ𝑖,𝑗 = ∅. That is, if states from 𝑣𝑖  cannot satisfy the constraints 

for 1 or more resources, then 𝑣𝑖  will not be counted when calculating the reachable states at 𝑣𝑗 . 

Furthermore, the edge (𝑣𝑖 , 𝑣𝑗) can be removed from the problem. At the origin node we have 

that ℛ0
∗ = ℛ̂0. If the initial state is known, it is the only reachable state at the origin, otherwise 

ℛ0
∗  is the set of possible initial states. 
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Backward Propagation 

Backward propagation follows the same general idea as forward propagation. Let 𝐹‾𝑖  be the 

reduced feasible space. Like how we calculated 𝑈𝑖(𝑥𝑖), we need a function ℬ (𝐹𝑖 ,  𝐹𝑗 , 𝑈𝑖(⋅)) that 

can calculate the values of 𝑥𝑖  at node 𝑣𝑖  that can lead to at least one feasible state 𝑥𝑗 at one of 

the successors 𝑣𝑗  , i.e, 

 ℬ (𝐹𝑖, 𝐹𝑗 , 𝑈𝑖(⋅)) = {𝑥𝑖 ∈ 𝐹𝑖|∃𝑢 ∈ 𝑈𝑖(𝑥𝑖),  𝑓(𝑥𝑖 , 𝑢) ∈ 𝐹𝑗} (142) 

However, this function is hard to compute and generates complex regions that will require 
more space to store, and more time to check during execution. Therefore, we calculate 
separate regions for each resource and use it to generate an approximate feasible state space 

�̂�𝑖  as follows: 

 𝒞(𝑟)(𝐹𝑖,  𝐹𝑗 , 𝑈𝑖) = {𝑥𝑖
(𝑟) ∈ 𝐹𝑖

(𝑟)|∃𝑢 ∈ 𝑈𝑖,  𝑓
(𝑟)(𝑥𝑖

(𝑟), 𝑢) ∈ 𝐹𝑗
(𝑟)}

�̂�𝑖,𝑗 =∏ (𝒞(𝑟)(𝐹𝑖,  �̂�𝑗 , 𝑈𝑖))

𝑟

�̂�𝑖 =∏ ⋃ 𝐹𝑖,𝑗
(𝑟)

𝑗, (𝑣𝑖,𝑣𝑗)∈𝐴𝑟

 (143) 

As in ℛ𝑖,𝑗, �̂�𝑖,𝑗 is the empty set if any resource constraint cannot be satisfied. In this case, the 

edge (𝑣𝑖, 𝑣𝑗) can be removed from the graph as it cannot generate feasible states. We do the 

forward propagation before the backward, so, at the destination node 𝑣𝑛, we have that 𝐹‾𝑛 =

�̂�𝑛 = ℛ̂𝑛. For example, if a node 𝑣𝑗  has a time-window [10,15] and the edge (𝑖, 𝑗) can have a 

duration in the interval [2,5], then 𝑣𝑖  must be visited in the time-window [10 − 5,15 − 2] =
[5,13]. If a different edge (𝑣𝑖, 𝑣𝑘) generated a propagated time-window of [7,17] on 𝑣𝑖, we 
would consider the union of both time-windows, i.e., [5,17]. Then we would take the 
intersection of𝑣𝑖’s original time-window, say [0,15], and the time-windows obtained from 
propagating downstream constraints to obtain an estimated feasible time-window of [5,17]. 
Note that the interval [5,15] can be divided into an interval feasible for paths passing through 
𝑣𝑖, [5,13], and one feasible for paths through 𝑣𝑘, [7,15]. The same can happen to other 

resource constraints. Therefore, it is possible that a state in �̂�𝑖  only satisfies the time-window 
for a certain path but satisfies the HOS resource constraints only for a different path. As all 

constraints are satisfied by some path, the state is included in �̂�𝑖  , but, in practice, that state 

cannot generate feasible successors. So, we have that �̂�𝑖  might contain states that cannot 

satisfy downstream solutions, i.e., 𝐹‾𝑖 ⊆ �̂�𝑖 ⊆ 𝐹𝑖. Figure 127 shows a 2D example of the 

difference between reduced feasible state space 𝐹‾𝑖  and its approximation �̂�𝑖. The blue region in 

Figure 127b belongs to �̂�𝑖, but not to 𝐹‾𝑖. 
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Figure 127. The green and brown regions are examples of possible feasible regions in a 2D 
space. The figures show how the exact (a) and approximate (b) feasible spaces are calculated. 

Propagating the resources 

We separate the resource extension functions according to how they affect the resource being 
updated. The resource extension functions either add a value to the resource (ADD), maintain 

the current resource value (NoEff), or set the resource value to 0 (RESET). Let 𝑒 = (𝑣𝑖 , 𝑣𝑗) be an 

edge, [𝛿𝑒
−, 𝛿𝑒

+] be edge 𝑒’s possible durations defined in 𝑈𝑖. Let [𝜂𝑖
−, 𝜂𝑖

+] be the feasible values 
for resource 𝑟 at node 𝑣𝑖. The approximate propagation functions described previously are 
defined as follows for the 3 types of REF: 

Forward Propagation 

ADD: ℱ(𝑟)(𝐹𝑖,  𝐹𝑗 , 𝑈𝑖) = [𝜂𝑖
− + 𝛿𝑒

−, 𝜂𝑖
+ + 𝛿𝑒

+]⋂[𝜂𝑗
−, 𝜂𝑗

+] 

NoEff: ℱ(𝑟)(𝐹𝑖,  𝐹𝑗 , 𝑈𝑖) = [𝜂𝑖
−, 𝜂𝑖

+]⋂[𝜂𝑗
−, 𝜂𝑗

+] 

RESET: ℱ(𝑟)(𝐹𝑖,  𝐹𝑗 , 𝑈𝑖) = {0}⋂[𝜂𝑗
−, 𝜂𝑗

+] 

Backward Propagation 

ADD: 𝒞(𝑟)(𝐹𝑖,  𝐹𝑗 , 𝑈𝑖) = [𝜂𝑗
− − 𝛿𝑒

+, 𝜂𝑗
+ − 𝛿𝑒

−]⋂[𝜂𝑖
−, 𝜂𝑖

+] 

NoEff: 𝒞(𝑟)(𝐹𝑖,  𝐹𝑗 , 𝑈𝑖) = [𝜂𝑖
−, 𝜂𝑖

+]⋂[𝜂𝑗
−, 𝜂𝑗

+] 

RESET: 𝒞(𝑟)(𝐹𝑖,  𝐹𝑗 , 𝑈𝑖) = {0}⋂[𝜂𝑗
−, 𝜂𝑗

+] 

 

(a) Blue dashed line: correct feasible space. (b) Blue dashed line: approximate feasible 

space. Blue region: infeasible. 
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When a resource’s feasible range is a set of disjoint intervals, the functions above can be 
applied to each interval separately and we take the union of the resulting sets. Note that, in 
these REFs, the decision’s duration is directly used to update the resource values. When 
energy/fuel consumption is included as a resource, the update value will be a function of the 
duration, so the propagation function will depend on the consumption model used. 

Reduced Decision Space 

The reduced decision space is generated following the same idea. 

 

U̅i,j(xi, Ui(⋅), F̂j) = {u ∈ Ui(xi)|f(xi, u) ∈ F̂j} =⋂{u

r

∈ Ui(xi)|f
(r)(xi, u) ∈ F̂j

(r)} (144) 

 U̅ixi, Ui(⋅)(, {F̂j}) = ⋃ U̅i,j(xi, Ui(⋅), Fĵ)

j, (vi,vj)∈A
′

 (145) 

Let 𝜂𝑖  be the current value of resource 𝑟. The other symbols are defined as in the previous 
section. 

ADD: 𝑈‾𝑖,𝑗
(𝑟)(𝑥𝑖, 𝑈𝑖(⋅), �̂�𝑗) = {𝑢 ∈ 𝑈𝑖(𝑥𝑖)|𝑓

(𝑟)(𝑥𝑖, 𝑢) ∈ �̂�𝑗
(𝑟)} = [𝜂𝑗

− − 𝜂𝑖, 𝜂𝑗
+ − 𝜂𝑖]⋂[𝛿𝑒

−, 𝛿𝑒
+] 

NoEff: 𝑈‾𝑖,𝑗
(𝑟)(𝑥𝑖, 𝑈𝑖(⋅), �̂�𝑗) = {

∅, 𝑖𝑓 𝜂𝑖 ∉ �̂�𝑗
(𝑟)

[𝛿𝑒
−, 𝛿𝑒

+],  𝑜.𝑤.
 

RESET: 𝑈‾𝑖,𝑗
(𝑟)(𝑥𝑖, 𝑈𝑖(⋅), �̂�𝑗) = {

∅, 𝑖𝑓 0 ∉ �̂�𝑗
(𝑟)

[𝛿𝑒
−, 𝛿𝑒

+],  𝑜. 𝑤.
 

Analytical Solutions 

At nodes where the only possible next stop is the destination it is possible to analytically define 
the best decision so that the algorithm does not need to search over the remainder of that 
search tree branch. Naturally, the decision depends on the cost function and constraints being 
considered in the problem. Consider the following cost function for a decision of duration 𝛿: 

 
𝐶(𝛿) = {

𝛼𝛿 + 𝛽𝜇𝑒𝜁(𝜇𝑒/𝛿), 𝑖𝑓 𝑑𝑟𝑖𝑣𝑖𝑛𝑔

(𝛼 + 𝛽𝛾 + 𝜃)𝛿, 𝑜. 𝑤.
 (146) 

, where 𝛼 is the trucks hourly operational cost (excluding fuel/energy) and 𝛽 is the cost per unit 
of fuel/energy. For non-driving decisions, 𝛾 is the hourly idling fuel/energy consumption, 𝜃 
represents hourly costs incurred while stopped from sources other than idle energy 
consumption and operational costs. For driving decisions, 𝜇𝑒 is the length of the road segment 
considered, and 𝜁(𝑣) is the fuel/energy consumption per unit of distance. This cost function 
considers both time and energy/fuel related costs, and their relative importance can be 
adjusted using the parameters 𝛼, 𝛽, and 𝜃. In this section, we study the optimal decisions for 
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the last driving and rest extension decisions. Although we focus on BETs, the solutions for diesel 
trucks can be obtained by ignoring the battery constraint. 

Last driving decision 

 𝑑𝐶

𝑑δ
= α + βμ𝑒

𝑑ζ(𝑣)

𝑑δ
= α + βμ𝑒

𝑑ζ(𝑣)

𝑑𝑣

𝑑𝑣

𝑑δ
= α − βμ𝑒

𝑑ζ(𝑣)

𝑑𝑣

μ𝑒
δ2

= α − β𝑣2
𝑑ζ(𝑣)

𝑑𝑣
= 0 

(147) 

Cost is minimum for 𝛿 =
𝜇𝑒

�̃�
, such that �̃� is the root of 𝑣2

𝑑𝜁(𝑣)

𝑑𝑣
=

𝛼

𝛽
. Assuming that 𝜁(𝑣) is a 

convex function, and, consequently, 
𝑑𝜁

𝑑𝑣
 is monotonically non-decreasing, we can say that 

𝑣2
𝑑𝜁(𝑣)

𝑑𝑣
 is strictly increasing over (max(0, 𝑣′),∞), where 𝑣′ satifies 

𝑑𝜁(𝑣′)

𝑑𝑣
= 0. As 𝛼 and 𝛽 are 

positive, �̃� is unique. The function 𝑣2
𝑑𝜁(𝑣)

𝑑𝑣
 does not depend on the edge, so �̃� can be calculated 

beforehand. Let [𝛿, 𝛿
_
] be 𝛿’s domain, the optimal decision is given by: 

 

𝛿 = {

𝛿
_
, 𝑖𝑓 𝛿 < 𝛿

_

𝛿, 𝑖𝑓 𝛿 > 𝛿

𝛿, 𝑜. 𝑤.

 (148) 

Last rest extension 

Let 𝜌 be the recharge rate at the current location, 𝛿0 ∈ [𝛿
_
0, 𝛿0] the rest extension to be chosen, 

and 𝛿ℓ ∈ [𝛿
_
ℓ, 𝛿ℓ] the duration of the decision at the following edge, which is the last driving 

edge. The cost from the rest node to the destination can be written as 𝐶(𝛿0, 𝛿ℓ) =
(𝛼 + 𝛽𝛾 + 𝜃)𝛿0 + 𝛼𝛿ℓ + 𝛽𝜇𝑒𝜁(𝜇𝑒/𝛿ℓ). Assume that, due to the destination node’s resource 

constraints and the current state’s resource values, 𝛿0 + 𝛿ℓ ∈ [𝐷
_
, 𝐷]. The optimization problem 

being solved at the last rest decision can be described as: 

 min
δ0,δl

𝐶(δ0, δl) = (α + βγ + θ)δ0 + αδl + βμ𝑒ζ(μ𝑒/δl) (149) 

s.t.: μ𝑒ζ(μ𝑒/δl) − δ0ρ − 𝐵0 ≤ 0 (150) 

 𝐷 ≤ δ0 + δl ≤ 𝐷 (151) 

 δ0 ≤ δ0 ≤ δ0 (152) 

 δl ≤ δl ≤ δl (153) 

, where (150) guarantees that the battery charge is non-negative when arriving at the 
destination. (151) restricts the time to reach the destination, and can be related to both HOS 
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and time-window constraints. (152) and (153) restrict the domains of 𝛿0 and 𝛿ℓ to the reduced 
decision space, which is affected by all constraints and the current state. Consider the following 
definitions: 

𝐻(𝑣) = 𝑣2
𝑑𝜁(𝑣)

𝑑𝑣

𝑃(𝑣) =
𝜇𝑒𝜁(𝑣) − 𝐵0

𝜌

∇𝐶 = [(𝛼 + 𝛽𝛾 + 𝜃) (𝛼 − 𝛽𝐻(𝑣))]

∇𝑔1 = [(−𝜌) (−𝐻(𝑣))]

�̃�, 𝐻(�̃�) =
𝛼

𝛽

𝑣, 𝐻(𝑣) = −
𝜃

𝛽
− 𝛾

𝑣, 𝐻(𝑣) = 𝜌

�̆�, 𝐻(�̆�) = 0

𝑣∗, 𝐻(𝑣∗) =
𝛼𝜌

𝛼 + 𝛽(𝜌 + 𝛾) + 𝜃

 

, where 𝑔1 represents constraint (150). 𝐻(𝑣) and 𝑃(𝑣) are auxiliary functions defined to 
simplify the notation and represent, respectively, the derivative of the energy consumption 
with respect to 𝛿ℓ and the minimum feasible 𝛿0 given 𝛿ℓ. The 𝑣’s with different accents are 
values used in the solution that can be calculated offline. �̃�, 𝑣, and 𝑣∗ represent, respectively, 
the speeds at which the cost gradient ∇𝐶 is perpendicular to (152), (151), and (150). 𝑣 and �̆� are 
the speeds at which (150) is parallel to (151) and (152), respectively. Note that, given a distance 

𝜇𝑒, each 𝑣 also defines a duration 𝛿ℓ, e.g., 𝛿ℓ =
𝜇𝑒

�̂�
. The accents on the 𝛿’s indicate which 𝑣 

generate them. First, consider the case when (150) is not active (e.g., diesel trucks). The 
optimum point is given by: 

𝛿0 = {
𝛿0, 𝑖𝑓 𝛿0 + 𝛿ℓ ≥ 𝐷

min (𝛿0, 𝐷 − 𝛿ℓ,max(𝛿0,  𝐷 − 𝛿𝑙,  𝐷 − 𝛿ℓ)) , 𝑜. 𝑤.

𝛿ℓ = {

𝛿ℓ, 𝑖𝑓 𝛿0 + 𝛿ℓ ≥ 𝐷

𝐷 − 𝛿0, 𝑖𝑓(𝛿0 + 𝛿ℓ < 𝐷) ∧ (𝛿0 ≠ 𝛿0)

min (𝛿ℓ,  max(𝛿ℓ,  𝛿𝑙,  𝐷 − 𝛿0)) , 𝑜. 𝑤.

 

If the point (𝛿0, 𝛿ℓ) satisfies (150), then it is optimal. Otherwise, it means that (150) must be 
active. In this case, we can define 7 candidate points and the sufficient conditions for them to 
be the optimum. The candidate points are given by the point along 𝑔1 with minimum cost and 
the points where (150) intersects other constraints, and the conditions conditions are derived 
from each point’s KKT conditions. Table 30 presents the candidate solutions and their 
conditions. Feasibility is a basic necessary condition for any solution, and was thus omitted 
from the table. 𝑃−1(𝑣) refers to the inverse of 𝑃(𝑣) over the domain 𝑣 ∈ [�̆�, ∞). The points 𝑥2 
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and 𝑥3, representing the candidates where (150) and one of the constraints forming (151) 
intersect, might be computationally expensive to calculate, so we can leave testing them for 
last. We can also use approximate solutions instead of solving it exactly. Note that the 
conditions are generated from speeds that can be calculated beforehand. Therefore, we may 
be able to directly eliminate some candidate solutions based on 𝛿ℓ’s domain. 

Table 30. Solution Candidates 

Point Condition 

𝑥1 = (𝑃(𝑣
∗), 𝛿ℓ

∗) - 

𝑥2 = (𝐷 − 𝛿2, 𝛿2),  𝑃(𝜇𝑒/𝛿2) = 𝐷 − 𝛿2 𝛿ℓ < 𝛿2 ≤ 𝛿ℓ
∗ 

𝑥3 = (𝐷 − 𝛿3, 𝛿3),  𝑃(𝜇𝑒/𝛿3) = 𝐷 − 𝛿3 𝛿ℓ
∗ ≤ 𝛿3 ≤ 𝛿ℓ 

𝑥4 = (𝛿0, 𝑃
−1(𝛿0)) 𝛿ℓ ≤ 𝑃

−1(𝛿0) ≤ 𝛿ℓ
∗ 

𝑥5 = (𝛿0, 𝑃
−1(𝛿0)) 𝛿ℓ

∗ ≤ 𝑃−1(𝛿0) ≤ 𝛿ℓ 

𝑥6 = (𝑃(𝜇𝑒/𝛿ℓ), 𝛿ℓ) 𝛿ℓ ≥ 𝛿ℓ
∗ 

𝑥7 = (𝑃(𝜇𝑒/𝛿ℓ), 𝛿ℓ) 𝛿ℓ ≤ 𝛿ℓ
∗ 

Cost Lower Bound 

Let 𝐴𝑑 ⊂ 𝐴′ represent the set of all arcs with driving as their assigned activity. For every node 
pair (𝑝, 𝑞) such that there is a directed path from 𝑝 to 𝑞 , let 𝒟(𝑝, 𝑞), 𝒟𝑑(𝑝, 𝑞), and 𝒟ℓ(𝑝, 𝑞) 
be, respectively, the minimum travel time (including service time), minimum driving time and 
minimum travel distance between nodes 𝑝 and 𝑞 with all resource, time-window and HOS 
constraints relaxed: 

𝒟(𝑝, 𝑞) = {
min(𝛥𝑝𝑞), 𝑖𝑓(𝑝, 𝑞) ∈ 𝐴′

min
(𝑝,𝑘)∈𝐴′

(min(𝛥𝑝𝑘) + 𝒟(𝑘, 𝑞)) , 𝑜. 𝑤.

𝒟𝑑(𝑝, 𝑞) = {

0, 𝑖𝑓(𝑝, 𝑞) ∈ 𝐴′ ∖ 𝐴𝑑

min(𝛥𝑝𝑞), 𝑖𝑓(𝑝, 𝑞) ∈ 𝐴𝑑

min
(𝑝,𝑘)∈𝐴′

(𝒟𝑑(𝑝, 𝑘) + 𝒟𝑑(𝑘, 𝑞)), 𝑜. 𝑤.

𝒟ℓ(𝑝, 𝑞) = {

0, 𝑖𝑓(𝑝, 𝑞) ∈ 𝐴′ ∖ 𝐴𝑑

𝜇𝑝𝑞 , 𝑖𝑓(𝑝, 𝑞) ∈ 𝐴𝑑

min
(𝑝,𝑘)∈𝐴′

(𝐷ℓ(𝑝, 𝑘) + 𝐷ℓ(𝑘, 𝑞)), 𝑜. 𝑤.

 

If there is no directed path from 𝑝 to 𝑞 , then 𝒟(𝑝, 𝑞) = 𝒟𝑑(𝑝, 𝑞) = 𝒟ℓ(𝑝, 𝑞) = ∞. 
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Let 𝐷𝐻𝑂𝑆(𝑑, 𝜓) represent the minimum duration of a HOS-compliant trip with 𝑑 driving hours 
and initial resource vector 𝜓, assuming the driver can rest anywhere, and without considering 
service time and time-window constraints, i.e., if a driver were at the beginning of an empty 
straight road with length equivalent to 𝑑 driving hours where he/she can rest anywhere, given 
an initial resource vector 𝜓, how long would he/she take to reach the end of the road without 
breaking the HOS regulations. A method to calculate 𝐷𝐻𝑂𝑆(𝑑, 𝜓) is described in Appendix I. Let 
𝒟𝑠(𝑝, 𝑞) be the service time required between nodes p and q. If the objective were simply to 
minimize trip duration, the lower bound ℒ𝑑𝑢𝑟  can be calculated as: 

ℒ𝑑𝑢𝑟(𝑝, 𝑞, 𝜓) = 𝐷𝐻𝑂𝑆(𝒟𝑑(𝑝, 𝑞), 𝜓) + 𝒟𝑠(𝑝, 𝑞) 

However, when considering a combination of trip duration and energy/fuel consumption or 
emissions as the objective function, the lower bound generated using only the duration term 
(𝛼ℒ𝑑𝑢𝑟(𝑝, 𝑞, 𝜓)) is too loose and not as useful. Therefore, we need a lower bound on the fuel 
consumption/emissions. 

Bound 1 

Idling cost: Let 𝛾 the energy/fuel consumption rate when idle (resting or service). A lower 
bound on the idling cost is given by: 

 ℒ𝑖𝑑𝑙1(𝑝, 𝑞, 𝜓) = (𝛽𝛾 + 𝜃)(𝐷𝐻𝑂𝑆(𝒟𝑑(𝑝, 𝑞), 𝜓) − 𝒟𝑑(𝑝, 𝑞) + 𝒟𝑠(𝑝, 𝑞)) (154) 

𝒟𝑠 is fixed as client visits are mandatory. 𝒟𝑑 considers the minimum driving time of each edge, 
and 𝐷𝐻𝑂𝑆(𝑑, 𝜓) − 𝑑 is monotonically increasing in 𝑑 (required rest time cannot decrease when 
driving time increases), so ℒ𝑖𝑑𝑙1 is a lower bound on idling cost. Note that if the 
cost/consumption parameters for rest and service time are different, the term 𝒟𝑠(𝑝, 𝑞) will 
appear separately multiplying its own parameter. 

Driving consumption: Let 𝑣𝑚𝑖𝑛 be the minimum travel speed allowed in the network. We 
assume that the fuel consumption per time 𝐹𝐶(𝑣) is monotonically increasing in the range of 
speeds used in the problem, as is the case for the model we use. Therefore, 𝐹𝐶(𝑣𝑚𝑖𝑛) gives a 
lower bound on the energy/fuel consumption rate when driving. A lower bound on the 
consumption due to driving is given by: 

ℒ𝑓_𝑑𝑟1(𝑝, 𝑞) = 3600 ⋅ 𝐹𝐶(𝑣𝑚𝑖𝑛)𝒟𝑑(𝑝, 𝑞) 

An alternative is using the minimum travel distance 𝒟ℓ(𝑝, 𝑞) and the speed 𝑣ℓ that minimizes 
the fuel consumption per distance, 𝜁(𝑣), (or the nearest feasible speed) to generate a 
energy/fuel consumption lower bound. 

Cost: Consider the cost function defined in (146). A cost lower bound is given by: 

ℒ𝑐𝑜𝑠𝑡1(𝑝, 𝑞, 𝜓) =  𝛼ℒ𝑑𝑢𝑟(𝑝, 𝑞, 𝜓) + 𝛽ℒ𝑓_𝑑𝑟1(𝑝, 𝑞) +  ℒ𝑖𝑑𝑙1(𝑝, 𝑞, 𝜓) 
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Note that the driving energy/fuel consumption bound is calculated using the minimum travel 
speed, whereas the idling cost and trip duration bounds are calculated using the maximum 
travel speed. Therefore, this bound is not tight. 

Bound 2 

When calculating analytical solutions in Last driving decision, we showed how to calculate the 
optimal speed based on energy/fuel and duration costs, and consumption model. We now use 
this information to refine the lower bound. 

Driving time: Bound 1 used a driving time considering the maximum travel speed. However, 
depending on the cost function, the cost increase due to fuel consumption at higher speeds 
may exceed savings due to shorter trip duration. Optimal solutions are expected to tend 
towards using the optimal speed �̃� (limited by possible increases in required rest time). With 
this in mind, we scale the driving time so that it represents the travel time at the optimal speed 
(or the nearest feasible speed). 

𝑣𝑡 = 𝑚𝑎𝑥(𝑚𝑖𝑛(�̃�, 𝑣𝑚𝑎𝑥), 𝑣𝑚𝑖𝑛)

�̃�𝑑(𝑝, 𝑞) = 𝒟𝑑(𝑝, 𝑞)
𝑣𝑚𝑎𝑥
𝑣𝑡

 

This scaling assumes that all edges have the same speed limits and optimum speed. An 
alternative (but still assuming that all edges have the same optimum speed) would be to use 
the length of the minimum length path, 𝒟ℓ(𝑝, 𝑞), to estimate a lower bound on the driving cost 
when traveling with speed 𝑣𝑡. A more general approach would be to, when building the graph, 
calculate 𝑣𝑡 for each edge, and store in each edge the travel time and cost associated with 𝑣𝑡. 
The stored costs can be used to calculate a minimum cost path and its driving time. In both 
alternatives, the minimum cost (we refer to it as ℒ𝑑𝑟_𝑐𝑜𝑠𝑡(𝑝, 𝑞)) can be used as a lower bound 
on the driving related costs (due to both emissions and duration) and we would require only to 
complement it with a lower bound on the idling costs (due to both emissions and duration). 

It is important to remember that, due to HOS regulations, increasing driving time may end up 
increasing required rests. The extra rest time caused by driving time scaling is given by: 

𝛬 = 𝐷𝐻𝑂𝑆(�̃�𝑑(𝑝, 𝑞), 𝜓) − �̃�𝑑(𝑝, 𝑞) − (𝐷𝐻𝑂𝑆(𝒟𝑑(𝑝, 𝑞), 𝜓) − 𝒟𝑑(𝑝, 𝑞)) 

Trip duration and fuel consumption are calculated following the same ideas as Bound 1 but 
using the scaled driving time and correcting trip duration and idling time to remove the extra 
rest time. 

Trip Duration: The trip duration is calculated as follows: 

ℒ𝑑𝑢𝑟2(𝑝, 𝑞, 𝜓) = 𝐷𝐻𝑂𝑆(�̃�𝑑(𝑝, 𝑞), 𝜓) − 𝛬 + 𝒟𝑠(𝑝, 𝑞) 
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Idling cost: The idling cost lower bound is given by the same expression as (154) due to the rest 
time correction, i.e., 

ℒ𝑖𝑑𝑙2(𝑝, 𝑞, 𝜓) = ℒ𝑖𝑑𝑙1(𝑝, 𝑞, 𝜓). 

Driving consumption: Energy/fuel consumption due to driving is given by: 

ℒ𝑓_𝑑𝑟2(𝑝, 𝑞) = 3600 ⋅ 𝐹𝐶(𝑣𝑡)�̃�𝑑(𝑝, 𝑞) 

Cost: A cost lower bound is given by: 

ℒ𝑐𝑜𝑠𝑡2(𝑝, 𝑞, 𝜓) =  𝛼ℒ𝑑𝑢𝑟2(𝑝, 𝑞, 𝜓) + 𝛽ℒ𝑓_𝑑𝑟2(𝑝, 𝑞) +  ℒ𝑖𝑑𝑙2(𝑝, 𝑞, 𝜓) 

Note that while ℒ𝑑𝑢𝑟2(𝑝, 𝑞, 𝜓) ≥ ℒ𝑑𝑢𝑟(𝑝, 𝑞, 𝜓) and ℒ𝑓_𝑑𝑟2(𝑝, 𝑞) ≥ ℒ𝑓_𝑑𝑟1(𝑝, 𝑞), ℒ𝑑𝑢𝑟2 and 

ℒ𝑓_𝑑𝑟2 are consistent with respect to the travel speed used for their calculation, and use a 

speed that minimizes cost (not accounting for mandatory rests). As the rest (idling) time is kept 
as the one from the minimum duration path, the rest time is the minimum feasible. Decreasing 
ℒ𝑑𝑢𝑟2 would imply that one or more edges are using a speed greater than the optimal, causing 
an increase in fuel consumption costs that exceeds the savings in trip duration costs. Similarly, 
decreasing ℒ𝑓_𝑑𝑟2, would cause an increase in trip duration costs, and increase overall cost. 

Therefore, ℒ𝑐𝑜𝑠𝑡2 is a lower bound. Each term is not a lower bound for the value it 
approximates, but they are calculated so that they generate a cost lower bound. If the driving 
cost lower bound ℒ𝑑𝑟_𝑐𝑜𝑠𝑡(𝑝, 𝑞) is calculated directly, then the cost lower bound is given by: 

ℒ𝑐𝑜𝑠𝑡2(𝑝, 𝑞, 𝜓) = ℒ𝑑𝑟_𝑐𝑜𝑠𝑡(𝑝, 𝑞) + (𝛼 + 𝛾𝛽 + 𝜃) (𝐷𝐻𝑂𝑆(𝒟𝑑(𝑝, 𝑞), 𝜓) − 𝒟𝑑(𝑝, 𝑞) + 𝒟𝑠(𝑝, 𝑞))⏟                            
𝑖𝑑𝑙𝑖𝑛𝑔 𝑡𝑖𝑚𝑒

 

Graph Preprocessing 

In the approximate dynamic programming algorithm used, we store the decision and cost for 
several states at each node. Therefore, having a large number of intermediate nodes between 
rest areas increases both the number of decisions needed to reach the destination and the 
storage space required by the algorithm. Furthermore, when optimizing travel speed to reduce 
fuel consumption, the precision with which speed can be adjusted depends on the time 
resolution used in the decision space, but also on the length of any given edge. If an edge is too 
short, any change in duration might generate a travel speed outside of the allowed range. In 
order to reduce the number of nodes in the graph, we use a stop-based graph based on the 
road network and remove short edges between nearby rest areas (e.g., only consider rest areas 
that are at least 2h away from the current node). By stop-based graph we mean a graph that 
directly links possible stop locations (origin, rest areas, clients), analogous to customer-based 
graphs used for vehicle routing problems. However, the graph is not complete as each location 
is connected only to locations that were downstream in the original road network. As clients 
are mandatory stops and have a fixed order, nodes are not directly connected to nodes 
downstream of the next client. It can be seen as generating the stop-based graph based on the 
subnetworks connecting each pair of consecutive clients, as opposed to using the whole 
network directly. Figure 128 shows a graph representing a road network, whereas Figure 129 
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shows the stop-based graph that would be generated from that network. As our experiments 
set the same speed profile for all edges, each edge (𝑖, 𝑗) of the stop-based graph was generated 
using the length of the minimum distance path between nodes i and j in the road network and 
setting the same speed profile used in the road network. We assume that a stop-based graph is 
known or can be obtained by the user, and do not cover the specifics of its construction for 
general networks. Algorithms to construct customer-based graphs for time-dependent road 
networks were proposed in (Ben Ticha et al. 2021). 

Given a stop-based graph, we remove edges that have distance or minimum travel time shorter 
than chosen limits, except when one of the edge’s nodes is a client, the origin, or the 
destination. In our experiments, the time and distance limits were set to 2h and 100km, 
respectively. In addition, as HOS regulations limit driving time, edges with minimum travel time 
greater than 8h were also removed. Although it is possible for the fastest path between 
locations to vary with time in time-dependent networks, we assume that edge lengths 
(distance) are fixed in the stop-based graph. 

 

Figure 128. Example graph focusing on the road network. Focuses on rest area (nodes with 
letter indexes) placement along main roads. Easy to visualize but has a large number of 
intermediate nodes (nodes with number indexes). 



 236 

 

Figure 129. Stop-based graph generated from Figure 128 to focus on the connection between 
possible stops (rest areas, clients, origin, destination). Each possible stop is directly connected 
to downstream stops satisfying predetermined conditions. Dashed arrows exemplify edges 
that could be removed for being too short or too long. 

Case Study 

Experiments were performed on the graph network shown in Figure 130. Every node 𝑝𝑖 is 
assumed to be a charging station that allows for long term parking. Nodes 𝑣4 and 𝐷 are clients 
with daily time-windows [12,16] and [8,16], respectively. All charging stations have the same 
charging power (100 kW or 50 kW, depending on the scenario), and are subject to availability 
time-windows. Within each scenario, probability distributions are defined for the start and end 
times of the availability time-windows. The same pair of distributions is used for all locations 
and days, but they are sampled separately. Table 31 describes the probability distributions used 
to generate the 3 different types of time-windows used. The battery capacity values tested 
were 400, 600, 800, and 1000kWh. Fuel constraints for diesel trucks were relaxed by setting a 
large fuel capacity. The average travel speed is set to 75km/h at all edges. As the energy 
consumption is affected by speed, speed can also affect vehicle range and problem feasibility. 
Therefore, for scenarios with feasibility issues, we performed experiments where the vehicle is 
allowed to reduce its speed to 70% of the average travel speed (around 52.5km/h). Our 
objective is to study how battery capacity, charging power and chargers/parking’ availability 
affect BETs performance in terms of trip duration, CO2 emissions and route feasibility, and 
compare it with a diesel truck’s performance. 
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Table 31. Experiment Parameters 

Parking Time-windows Distribution 

 Start Time (h) End Time (h) 

Narrow N(9,1) N(16,1) 

Medium N(7,1) N(19,1) 
Wide N(5,1) N(22,1) 

 

Figure 130. Network used for experiments. Arc lengths are given in kilometers. 

Figure 131 shows how trip duration is affected by parking availability, charging power and 
battery capacity. All scenarios were infeasible for the 400kWh capacity, so no results are 
shown. It can be seen that when wide time-windows are used, diesel trucks hold a significant 
advantage in terms of trip duration, especially when lower charging power and battery 
capacities are used. This result is expected and likely caused by schedule adjustments needed 
to accommodate longer recharging stops. For example, due to the HOS regulations and parking 
time-windows, short delays might push drivers close to their driving limits and require them to 
add another daily rest (10h minimum) to the trip. However, as we consider more severe parking 
shortage scenarios by narrowing the time-windows, this advantage is gradually reduced. When 
narrow time-windows are considered, the BET’s performance was comparable to the baseline 
diesel truck’s. If parking availability is limited, diesel trucks would also need to adjust their 
schedules to guarantee appropriate parking regardless of having longer range and faster 
refueling times. Figure 132 shows results regarding CO2 emissions. In this aspect, BETs present 
a clear advantage in all feasible scenarios. In scenarios where 600kWh battery capacity was 
considered we encountered some feasibility issues, shown in Figure 133. As energy 
consumption is speed-dependent, we rerun these experiments allowing the speed to be 
adjusted between 70%-100% of the road’s average speed. Figure 133 shows how this allowed 
speed reduction improves feasibility. The effects of the allowed speed reduction on the trip 
duration and CO2 emissions are shown in Figure 134 and Figure 135. 

These results show that diesel trucks have an advantage (regarding trip duration) under ideal 
parking availability conditions, but that advantage is greatly reduced when we account for 
current parking shortage issues. Although the number of charging stations available is not 
comparable to the number of regular truck stops and gas stations, the number of BETs in 
operation will also be limited at first. Furthermore, integrating speed optimization into the 
planning mitigates range and feasibility problems. While larger battery capacity and charging 
power help narrowing the performance gap between BETs and diesel trucks, the battery and 
charger requirements are less restrictive when practical constraints are considered. It is true 
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that BETs present a series of limitations and that they cannot replace diesel trucks in every 
situation. However, it is important to remember that diesel trucks do not operate in ideal 
scenarios. Having a larger range does not mean that this range is always gonna be needed. 
Being able to refuel fast does not mean that breaks are limited to short refueling stops. 
Similarly, it is unrealistic to evaluate BETs as if they were supposed to be drop-in replacements 
for diesel trucks. BETs will require different itineraries, but, as seen in Figure 131, the impact of 
needed adjustments may be small depending on each application’s constraints. Therefore, 
when comparing the performance of BETs and diesel trucks, it is important to account for the 
impacts of practical constraints such as HOS regulations, delivery and parking constraints. 

 

Figure 131. Trip duration under different parking availability and charging infrastructure 
conditions. 
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Figure 132. CO2 emissions under different parking availability and charging infrastructure 
conditions. 

 

Figure 133. Trip feasibility under different parking availability and charging infrastructure 
conditions for scenarios with 600kWh battery capacity. 
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Figure 134. Trip duration under different parking availability and charging infrastructure 
conditions for scenarios with 600kWh battery capacity. 

 

Figure 135. CO2 emissions under different parking availability and charging infrastructure 
conditions for scenarios with 600kWh battery capacity. 

Experiments on Random Networks 

Without fast chargers 

Experiments were performed on 10 random networks with between 15 and 100 charging 
stations. The average distance between charging stations is set to 200km. All charging stations 
have the same charging power (100 kW or 50 kW, depending on the scenario), and are subject 
to availability time-windows. Within each scenario, probability distributions are defined for the 
start and end times of the parking availability time-windows. The same pair of distributions is 
used for all locations and days, but they are sampled separately. Table 31. Experiment 
Parameters describes the probability distributions used to generate the 3 different types of 
time-windows used. We consider a [0,24] departure time-window (first day only), a daily [8,16] 
delivery time-window for the destination, and 100h planning horizon. The battery capacity 
values tested were 500, 800, and 1000 kWh. Fuel constraints for diesel trucks were relaxed by 
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setting a large fuel capacity. The maximum speed limit is set to 80km/h at all edges. As the 
energy consumption is affected by speed, speed can also affect vehicle range and problem 
feasibility. Therefore, in the experiments, we also vary whether the speed limit is taken as the 
average travel speed or if the vehicle is allowed to reduce its speed to 70% of the speed limit 
(around 56km/h). Our objective is to study how battery capacity, charging power, speed control 
and chargers/parking’ availability affect BETs performance in terms of trip duration, CO2 
emissions and route feasibility, and compare it with a diesel truck’s performance. 

Figure 136 shows how average trip duration is affected by parking availability, charging power 
and battery capacity. In scenarios with wide time-windows and 50kW chargers, diesel trucks 
hold a significant advantage in terms of trip duration. This result is expected as schedule 
adjustments may be needed to accommodate longer recharging stops. HOS regulations and 
parking time-windows may also exacerbate this effect in some instances, as short delays can 
push drivers close to their working hours limits and require them to add another daily rest (10h 
minimum) to the trip. However, as we consider severe parking shortage scenarios (narrow 
time-windows), this advantage is reduced. If parking availability is limited, diesel trucks also 
need to adjust their schedules to guarantee appropriate parking regardless of having longer 
range and faster refueling times. When 100kW chargers are considered, the average trip 
duration of BETs with 1MWh battery is comparable to the baseline diesel trucks’ in all 
scenarios. Showing that, in these instances, adequate synchronization of recharging and resting 
times completely negated the charging time and range issues. In terms of CO2 emissions, BETs 
present a clear advantage in all feasible scenarios, as shown in Figure 137. Figure 138 presents 
how route feasibility was affected by parking availability, charging power, battery capacity and 
speed flexibility. Note that the results shown are the aggregate of all 10 networks used. 
Although feasibility issues were mitigated by higher charging power and travel speed flexibility, 
they were not resolved, and some networks had zero feasibility rate for one or more scenarios. 
Nevertheless, the effect of parking availability and speed optimization show that these are also 
important factors to consider when assessing the viability of truck electrification. 
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Figure 136. Average trip duration under different parking availability and charging 
infrastructure conditions. Includes only scenarios that allow speed reduction. 

 

Figure 137. CO2 emissions under different parking availability and charging infrastructure 
conditions. Includes only scenarios that allow speed reduction. 
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Figure 138. Percentage of instances that were feasible under different parking availability and 
charging infrastructure conditions. All diesel truck scenarios were feasible. 

Fast chargers with fixed wait time 

In these experiments, we use 10 randomly generated networks to study the effect of fast 
chargers. The average spacing between charging stations is set to 100km, the departure time 
constraint was narrowed to the interval [6,12], and we fix the availability time-windows to the 
mean values of the distributions used previously. The scenarios considered vary the percentage 
of charging stations replaced by fast charging stations (0, 10, 20 or 30%), the charging power of 
the 2 types of chargers (regular chargers: 50 or 100kW, fast chargers: 150, 300, 500kW). Results 
for diesel trucks are also given as a baseline. The stop duration at fast chargers is limited to 3h. 
Charging stations with fast-chargers do not have availability time-windows, but, instead, have a 
fixed waiting time (0.5, 1 or 2h) before recharge starts. The waiting time is treated as service 
time, but it does not count towards the stop duration limit. 



 244 

 

Figure 139. Average trip duration for scenarios with 100km avg. spacing between charging 
stations, and without fast chargers. 
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Figure 140. Average trip duration for scenarios with 100km avg. spacing between charging 
stations, 50kW chargers, and 0.5h wait. 
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Figure 141. Average trip duration for scenarios with 100km avg. spacing between charging 
stations, 100kW chargers, and 0.5h wait. 
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Figure 142. Average trip duration for scenarios with 100km avg. spacing between charging 
stations, 50kW chargers, and 1h wait. 
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Figure 143. Average trip duration for scenarios with 100km avg. spacing between charging 
stations, 100kW chargers, and 1h wait. 
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Figure 144. Average trip duration for scenarios with 100km avg. spacing between charging 
stations, 50kW chargers, and 2h wait. 
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Figure 145. Average trip duration for scenarios with 100km avg. spacing between charging 
stations, 100kW fast chargers, and 2h wait. 

Figure 139 shows the average trip duration for scenarios without fast chargers. The results 
obtained are similar to the ones from Figure 136. When 50kW chargers are used, the difference 
in trip duration between BETs and diesel trucks decreases when narrow time-windows are 
considered. When 100kW chargers are used, BETs with 1MWh batteries perform on the same 
level as diesel trucks. Figure 142 and Figure 143 present results when part of the charging 
stations are replaced by fast chargers with 1h wait. When regular chargers have only 50kW 
power, the inclusion of 300 and 500kW fast chargers show trip duration reductions of up to 
20% compared to scenarios without fast chargers. In scenarios with 100 kW chargers, the 
improvement generated by fast chargers is significantly reduced, being completely eliminated 
for BETs with 1 MWh batteries. Furthermore, the improvements gained from increasing the 
percentage of fast chargers are also significantly smaller than in the scenarios with 50kW 
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chargers. This shows that although fast chargers are the intuitive way to address one of BET’s 
main weak-points, depending on the context, it might be more advantageous to increase the 
number or power of regular chargers instead of increasing the number of fast chargers. Figure 
140, Figure 141, Figure 144, and Figure 145 show the results for 0.5 and 2h waiting time. 

These results shed some light on how the charging and parking infrastructure can impact BET 
performance and viability. Similar simulations can be used to determine appropriate 
infrastructure levels for a region given its expected BET population and available budget. For 
example, policymakers can study whether it is more beneficial to invest in increasing the 
number of chargers, or increasing the power of the installed chargers. It can also be used to 
advise truck drivers and trucking companies as to which types of vehicles will better fit the 
region’s future infrastructure. 

Conclusion 

In this project, we studied how practical constraints, such as HOS (hours-of-service) regulations 
and limited parking availability, impact the performance gap between battery electric trucks 
(BETs) and diesel trucks. Both BETs and diesel trucks need to rest regularly due to HOS 
regulations, and, given the current truck parking shortage in the US and the risks associated 
with illegal truck parking, it is important to include parking information in the planning process. 
We include energy/fuel consumption constraints into the resource constrained shortest path 
formulation for the shortest path and truck driver scheduling problem with parking availability 
constraints proposed by the same authors in (Vital and Ioannou 2020). Experiments were 
performed on random networks to estimate the trip duration and C02 emissions of a baseline 
diesel truck and BETs with different battery capacities under different available charging power 
and parking shortage severity levels. In terms of emissions, BETs vastly outperformed the diesel 
truck in all feasible scenarios. Furthermore, when parking availability is limited, the 
performance gap (in terms of trip duration) between BETs and diesel trucks is greatly reduced 
in scenarios with 50kW chargers, and further reduced when 100kW chargers are considered. In 
addition, scenarios with fast charging stations show how the benefits of replacing some low-
power charging stations by fast-chargers vary with the power and expected availability/wait of 
chargers from either type. This illustrates the importance of considering the various constraints 
to which drivers are subjected when evaluating the viability of BETs, and compare not if the 
solutions used by diesel trucks are feasible for BETs, but whether solutions tailored for BETs 
have a good enough performance in a particular region. 

Conclusion 

This project developed methods to integrate parking availability information into the planning 
process for long-haul trucking and studied truck parking shortages’ potential impacts on the 
industry. First, we studied the truck driver scheduling problem (TDSP), which considers a fixed 
route and aims to determine a minimum duration regulation-compliant schedule. We proposed 
a mixed integer programming formulation that uses conditioned time-window constraints to 
model the parking availability at parking facilities and moving window constraints to model the 
hours-of-service (HOS) constraints for long trips. Simulation results illustrate that schedules 
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calculated without accounting for parking availability are often infeasible. Although parking 
constraints increased trip duration in some scenarios, these scenarios also showed lower 
feasibility rates when ignoring parking information. 

We followed by extending the TDSP under parking availability constraints to include path 
planning. We proposed a resource-constrained shortest path formulation that uses a resource 
vector to keep track of the HOS and time constraints. The problem is solver over an auxiliary 
network that explicitly models the different activities available to drivers and how they affect 
each regulation constraint. We proposed a tailored label-correcting algorithm that solves the 
problem to optimality. Computational experiments showed that parking conditions could 
significantly affect the route choice, illustrating the importance of accounting for parking 
availability information early in the planning process. We also simulated the potential costs of 
disregarding parking information under different parking shortage severity levels and how they 
compare to the cost increase caused by imposing parking restrictions. The results vary greatly 
depending on the available routes’ quality, the parking shortage severity, and the expected cost 
of illegal parking. The results underline the importance of including parking information as early 
as possible to increase the quantity and quality of available routes and schedules. In addition, it 
also elicits the importance of further research on estimating the potential costs and risks of 
illegal truck parking. 

Finally, we extended the resource-constrained shortest path formulation to the case of battery-
electric trucks (BETs). We studied the impact of coordinating rest and recharge needs on BETs’ 
performance and its comparison to diesel trucks. Computational experiments were used to 
estimate the effects of different levels of charging and parking infrastructure. Although BETs 
generate only a small fraction of diesel trucks’ CO2 emissions, BETs require longer trip 
durations in most scenarios. However, this gap in trip duration depends on battery capacity, 
charging infrastructure (power of regular and fast chargers), and parking/charging facilities’ 
availability (regular chargers’ time-windows, and fast chargers number and wait time). A 
common concern regarding the utilization of BETs for long-haul trucking is the infrastructure 
required to quickly charge large batteries, reducing the disparity to diesel trucks’ refueling time. 
Nevertheless, our experiments show that, although fast-chargers can significantly reduce trip 
duration in many scenarios, trip duration is even more sensitive to the power and availability of 
the regular chargers used for long (overnight) rests. It is important to note that these results do 
not mean that fast chargers are without benefit. The advantages of particular infrastructure 
decisions will vary for each case. Our experiments illustrate that, while trying to have BETs 
operating in similar itineraries to current diesel trucks (e.g., using fast chargers to reduce 
recharging time) might be the instinctive way to approach truck electrification, it is not the only 
one. It is likely not the best approach either. 

In this project, we exposed the importance of using truck parking availability information during 
planning, and proposed methods to do so. Besides helping individual truck drivers with trip 
planning, the methods developed in this project can simulate different scenarios and aid 
policymakers in estimating the impacts of infrastructure investment decisions.  
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Data Summary 

Products of Research  

As part of this project, we collected real-world diesel truck’ characteristics and trajectory data 
traveling on two urban freight corridors—Alameda St and Wilmington Ave—near the Port of 
Los Angeles in California. These data were used to evaluate the effectiveness of a truck EAD 
system, called Eco-Drive, in reducing energy consumption of the truck.  

Data Format and Content  

Both real-world baseline and Eco-Drive data files are in .csv format. The contents of each file 

include vehicle speed (in mph), fuel rate (in liters/s), and distance to the next intersection (in 
meters) collected every second (1Hz). 

Data Access and Sharing  

The data are made available publicly via DataDRYAD: https://datadryad.org/stash, which is licensed 
under a CC0 1.0 Universal (CC0 1.0) Public Domain Dedication license. The DOI for the dataset is 
https://doi.org/10.6086/D1BT3K. 

Reuse and Redistribution  

The data are restricted for research use only. If the data are used, our work should be properly cited 
as:  

Wei, Zhensong; Brown, Dylan; Hao, Peng; Boriboonsomsin, Kanok (2022), Real-world heavy-
duty truck trajectories on signalized corridors, Dryad, Dataset, https://doi.org/10.6086/D1BT3K  

  

https://doi.org/10.6086/D1BT3K
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Appendix A: Pre-Survey of Truck EAD Experiment 

ECO-Driving Technology and Behavior Research for Heavy-Duty Trucks 
“Before” Survey 

Thank you for your participation. This is the first of four surveys you will take in this study. This 
survey should take about 3-5 minutes to complete. You are not required to answer any question 
that you would prefer not to answer. All responses are confidential and you may withdraw from 
the study at any time. 

Let’s start with your typical day at work. 

1. The majority of your driving job is within how many miles from the home base? 

□ Less than 25 miles  □ 25 to 49 miles  □ 50 to 99 miles  

□ 100 to 249 miles  □ 250 miles or more 

2. What portion of your driving while on the job occur on streets with traffic lights? 

□ Less than 20%   □ 20% to 39%   □ 40% to 59%  

□ 60% to 79%   □ 80% or more 

Now, imagine that you are driving on a street that has traffic lights. 

3. When approaching a GREEN light, how useful is it for you to know how many seconds are 

left before the light will change from GREEN to YELLOW? 

□ Extremely useful  □ Very useful  □ Moderately useful 

□ Somewhat useful  □ Not at all 

4. When approaching a RED light, how useful is it for you to know how many seconds are left 

before the light will change from RED to GREEN? 

□ Extremely useful  □ Very useful  □ Moderately useful 

□ Somewhat useful  □ Not at all 

5. When stopping at a RED light, how useful is it for you to know how many seconds are left 

before the light will change from RED to GREEN? 

□ Extremely useful  □ Very useful  □ Moderately useful 

□ Somewhat useful  □ Not at all 
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Let’s say we put a smart device on your truck. Again, imagine that you are driving on a street 
that has traffic lights, and you are approaching a traffic light. 

6. How useful is the device if it can recommend what speed you should be driving at in order 

to pass through the intersection on green? 

□ Extremely useful  □ Very useful  □ Moderately useful 

□ Somewhat useful  □ Not at all 

7. How useful is the device if it can recommend you to slow down ahead of time because it 

knows that you will not be able to pass through the intersection on green? 

□ Extremely useful  □ Very useful  □ Moderately useful 

□ Somewhat useful  □ Not at all 
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ECO-Driving Technology and Behavior Research for Heavy-Duty Trucks 

Encuesta preliminar 

Gracias por su participación. Esta es la primera de cuatro encuestas que realizará en este 
estudio. Esta encuesta tomara alrededor de 3-5 minutos para completar. No está obligado a 
responder a ninguna pregunta que prefiera no responder. Todas las respuestas son 
confidenciales y usted puede retirarse del estudio en cualquier momento. 

Comencemos con tu día típico en el trabajo. 

1. ¿La mayoría de su trabajo de conducción está dentro de cuántas millas de la base de 

operaciones? 

□ Menos de 25 millas  □ 25 a 49 millas  □ 50 a 99 millas  

□ 100 a 249 millas  □ 250 millas o más 

2. ¿Qué parte de su conducción mientras está en el trabajo se produce en las calles con 

semáforos? 

□ Menos del 20%   □ 20% a 39%   □ 40% a 59%  

□ 60% a 79%   □ 80% o más 

Ahora, imagine que usted está conduciendo en una calle que tiene semáforos. 

3. Al acercarse a una luz VERDE, ¿qué tan útil es para usted saber cuántos segundos quedan 

antes de que la luz cambie de VERDE a AMARILLO? 

□ Extremadamente útil  □ Muy útil  □ Moderadamente útil 

□ Algo útil   □ Para nada 

4. Al acercarse a una luz ROJA, ¿qué tan útil es para usted saber cuántos segundos quedan 

antes de que la luz cambie de ROJO a VERDE? 

□ Extremadamente útil  □ Muy útil  □ Moderadamente útil 

□ Algo útil   □ Para nada 

5. Al detenerse en una luz ROJA, ¿qué tan útil es para usted saber cuántos segundos quedan 

antes de que la luz cambie de ROJO a VERDE? 

□ Extremadamente útil  □ Muy útil  □ Moderadamente útil 

□ Algo útil   □ Para nada 
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Digamos que ponemos un dispositivo inteligente en su camión. Una vez más, imagine que 
usted está conduciendo en una calle que tiene semáforos, y se estás acercando a un 
semáforo. 

6. ¿Qué tan útil es el dispositivo si puede recomendar a qué velocidad debe conducir para 

pasar a través de la intersección en verde? 

□ Extremadamente útil  □ Muy útil  □ Moderadamente útil 

□ Algo útil   □ Para nada 

7. ¿Qué tan útil es el dispositivo si puede recomendarle que reduzca su velocidad con 

anticipación porque sabe que no será capaz de pasar a través de la intersección en verde? 

□ Extremadamente útil  □ Muy útil  □ Moderadamente útil 

□ Algo útil   □ Para nada 
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Appendix B: Post-Survey of Truck EAD Experiment 

ECO-Driving Technology and Behavior Research for Heavy-Duty Trucks 

“After” Survey 

Thank you for your participation. This is the last of four surveys you will take in this study. This 
survey should take about 3-5 minutes to complete. You are not required to answer any question 
that you would prefer not to answer. All responses are confidential and you may withdraw from 
the study at any time. 

Think about your experience driving in the simulator with Eco-Drive. 

1. Between the two user interface options of Eco-Drive, which one(s) would you use in your 

driving job? 

□ Either of them     □ The one with visual & audio feedback 

□ The one with audio only feedback  □ None of them 

2. If the truck you drive at your job is equipped with Eco-Drive that provides visual & audio 

feedback, how often will you use it when driving on streets with traffic lights? 

□ Always  □ Often  □ Sometimes  □ Seldom   

□ Never 

3. If the truck you drive at your job is equipped with Eco-Drive that provides audio-only 

feedback, how often will you use it when driving on streets with traffic lights? 

□ Always  □ Often  □ Sometimes  □ Seldom   

□ Never 

Please tell us more about what you think of Eco-Drive. 

4. What do you like most about Eco-Drive? 

              
              
              
              

5. What do you dislike most about Eco-Drive? 
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6. How can we make Eco-Drive better for you and other truck drivers? 

              
              
              
              

Finally, let’s wrap up this survey. 

7. What is your age?     

8. How many years have you been a professional truck driver?    

THANK YOU! 
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ECO-Driving Technology and Behavior Research for Heavy-Duty Trucks 

Encuesta posterior 

Gracias por su participación. Esta es la última de las cuatro encuestas que realizará en este 
estudio. Esta encuesta tomara alrededor de 3-5 minutos para completar. No está obligado a 
responder a ninguna pregunta que prefiera no responder. Todas las respuestas son 
confidenciales y usted puede retirarse del estudio en cualquier momento. 

Piense en su experiencia conduciendo en el simulador con Eco-Drive. 

1. ¿Entre las dos opciones de interfaz de usuario de Eco-Drive, cuál(es) utilizará en su trabajo 

de conducción? 

□ Cualquiera de las dos    □ El que tiene Visual & Comentarios de 

audio 

□ El que tiene sólo comentarios de audio  □ Ninguna de las dos 

2. ¿Si el camión que conduce en su trabajo está equipado con Eco-Drive que proporciona 

visual & comentarios de audio, con qué frecuencia lo usará cuando se conduce en las calles 

con semáforos? 

□ Siempre  □ frecuentemente □ Algunas veces □ Rara vez   

□ Nunca 

3. ¿Si el camión que conduce en su trabajo está equipado con Eco-Drive que proporciona sólo 

comentarios de audio, con qué frecuencia lo utilizará cuando conduzca en las calles con 

semáforos? 

□ Siempre  □ frecuentemente □ Algunas veces □ Rara vez   

□ Nunca 

Por favor, cuéntanos más sobre lo que piensas de Eco-Drive. 

4. ¿Qué es lo que más le gusta de Eco-Drive? 

              
              
              
              

5. ¿Qué es lo que no le gusta de Eco-Drive? 
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6. ¿Cómo podemos hacer Eco-Drive mejor para usted y otros conductores de camiones? 

              
              
              
              

Por último, vamos a terminar esta encuesta. 

7. ¿Cuántos años tiene?      

8. ¿Cuántos años has sido un camionero profesional?    

¡Gracias! 
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Appendix C: Parts of Proof of Theorem 1.3 

Case a), i.e., 𝑰 ∈ 𝜴𝟏 

Consider the Lyapunov function 

𝑉(𝜌) =
(𝜌 − 𝑑/𝑣𝑓)

2

2
, 

then we have 

�̇�(𝜌) = (𝜌 −
𝑑

𝑣𝑓
) �̇� = −(𝜌 −

𝑑

𝑣𝑓
) (𝑞2 − 𝑞1). 

Using equation (41) and Figure 79, we have that when 0 ≤ 𝜌 ≤
𝐶𝑑

𝑣𝑓
, 𝑞1 = 𝑑 and 𝑞2 = 𝑣𝑓𝜌. Thus 

therefore �̇� = −𝑣𝑓 (𝜌 −
𝑑

𝑣𝑓
)
2

, ∀𝜌 ∈ [0,
𝐶𝑑

𝑣𝑓
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𝐶𝑑

𝑣𝑓
< 𝜌 ≤ �̃�𝑗 −

(1−𝜖0)𝐶𝑑

�̃�
, 𝜌 −

𝑑

𝑣𝑓
> 0, 𝑞1 = 𝑑 

and 𝑞2 = (1 − 𝜖0)𝐶𝑑. Thus 

due to (1 − 𝜖0)𝐶𝑑 − 𝑑 > 0 and 𝑑/𝑣𝑓 < 𝜌 ≤ 𝜌
𝑗 , ∀𝜌 ∈ (

𝐶𝑑

𝑣𝑓
, 𝜌𝑗], which implies 0 <

𝜌−𝑑/𝑣𝑓

𝜌𝑗−𝑑/𝑣𝑓
≤ 1. 

Therefore �̇� ≤ −
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𝜌𝑗−𝑑/𝑣𝑓
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𝑑
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𝑗 − 𝜌). Thus 
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) 
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due to 0 <
𝜌−𝑑/𝑣𝑓

𝜌𝑗−𝑑/𝑣𝑓
≤ 1, �̃� − 𝑤 < 0 and 𝜌𝑐 − (𝜌

𝑗 −
𝑑

𝑤
) < 0. Therefore, �̇� ≤
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Case b), i.e., 𝑰 ∈ 𝜴𝟐 
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𝑤
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• Case I: 𝜌(0) ∈ (𝜌𝑗 −
𝑑

𝑤
, �̃�𝑗 −

𝑑

�̃�
]. 

• Case II: 𝜌(0) ∈ (�̃�𝑗 −
𝑑

�̃�
, 𝜌𝑗]. 

In case I, 𝑞1 = 𝑤(𝜌
𝑗 − 𝜌) and 𝑞2 = 𝑑 as long as 𝜌 ∈ (𝜌𝑗 −

𝑑

𝑤
, �̃�𝑗 −

𝑑

�̃�
],  ∀𝑡 ≥ 0, which we need 

to show. We have 

�̇� = 𝑞1 − 𝑞2 = −𝑤𝜌 + 𝑤𝜌
𝑗 − 𝑑, 

 𝑞2 − 𝑞1 = �̃�(�̃�𝑗 − 𝜌) − 𝑤(𝜌𝑗 − 𝜌)

= �̃�(�̃�𝑗 − 𝜌𝑐) − 𝑤(𝜌
𝑗 − 𝜌𝑐) + (�̃� − 𝑤)(𝜌𝑐 − 𝜌)

≥ (�̃� − 𝑤) [𝜌𝑐 − (𝜌
𝑗 −

𝑑

𝑤
)]

≥
(�̃� − 𝑤) [𝜌𝑐 − (𝜌

𝑗 −
𝑑
𝑤)]

𝜌𝑗 − 𝑑/𝑣𝑓
(𝜌 − 𝑑/𝑣𝑓),

 

(158) 

 
�̇� ≤ −𝛼 (𝜌 −

𝑑

𝑣𝑓
)

2
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whose solution is 

𝜌(𝑡) = (𝜌𝑗 −
𝑑

𝑤
) + [𝜌(0) − (𝜌𝑗 −

𝑑

𝑤
)] 𝑒−𝑤𝑡. 

Since 0 < 𝜌𝑗 −
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𝑤
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𝑑

�̃�
],  ∀𝑡 ≥ 0 

and 𝜌(𝑡) converges exponentially fast to 𝜌𝑗 −
𝑑

𝑤
 according to the above equation. 

In case II, when 𝜌(0) ∈ (�̃�𝑗 −
𝑑

�̃�
, 𝜌𝑗], it follows from Figure 80 that 𝑞1 = 𝑤(𝜌

𝑗 − 𝜌), 𝑞2 =

�̃�(�̃�𝑗 − 𝜌) and 

�̇� = −(𝑤 − �̃�)𝜌 + (𝑤 − �̃�)𝜌𝑐, 

as long as 𝜌(𝑡) ∈ (�̃�𝑗 −
𝑑

�̃�
, 𝜌𝑗], whose solution is 

𝜌(𝑡) = 𝜌𝑐 + (𝜌(0) − 𝜌𝑐)𝑒
−𝑤0𝑡 ≤ (𝜌𝑗 −

𝑑

𝑤
) + (𝜌(0) − 𝜌𝑐)𝑒

−𝑤0𝑡, 

where 𝑤0 = 𝑤 − �̃� > 0. Since 𝜌𝑐 < �̃�
𝑗 −

𝑑

�̃�
, it follows that 𝜌(𝑡) will decrease exponentially to 

the value of �̃�𝑗 −
𝑑

�̃�
 at which instant �̇� switches to case I which guarantees exponential 

convergence to 𝜌𝑗 −
𝑑

𝑤
. The above equation implies that 

|𝜌(𝑡) − (𝜌𝑗 −
𝑑

𝑤
)| ≤ 𝑐0𝑒

−𝛼𝑡, 

where 𝑐0 = 𝜌(0) − (𝜌
𝑗 −

𝑑

𝑤
) and 𝛼 = min{𝑤,𝑤 − �̃�}. 

Case c), i.e., 𝑰 ∈ 𝜴𝟑 

Consider the Lyapunov function 

𝑉(𝜌) =
(𝜌 − 𝜌2

𝑒)2

2
, 

where 𝜌2
𝑒 = 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
. Then �̇� = −(𝜌 − 𝜌2

𝑒)(𝑞2 − 𝑞1). As shown before, when 
𝐶𝑑

𝑣𝑓
< 𝜌 ≤

𝜌𝑗 −
𝑑

𝑤
, we have 𝜌 − 𝜌2

𝑒 < 0 and 

due to 0 <
(𝜌−𝜌2

𝑒)

𝐶𝑑/𝑣𝑓−𝜌2
𝑒 < 1, ∀𝜌 ∈ (

𝐶𝑑

𝑣𝑓
, 𝜌𝑗 −

𝑑

𝑤
] and (1 − 𝜖0)𝐶𝑑 − 𝑑 < 0. Therefore �̇� ≤

−
(1−𝜖0)𝐶𝑑−𝑑

𝐶𝑑/𝑣𝑓−𝜌2
𝑒 (𝜌 − 𝜌2

𝑒)2. When 𝜌𝑗 −
𝑑

𝑤
< 𝜌 ≤ �̃�𝑗 −

(1−𝜖0)𝐶𝑑

�̃�
, 

 
𝑞2 − 𝑞1 = (1 − 𝜖0)𝐶𝑑 − 𝑑 ≤

(1 − 𝜖0)𝐶𝑑 − 𝑑

𝐶𝑑/𝑣𝑓 − 𝜌2
𝑒 (𝜌 − 𝜌2

𝑒), 
(160) 
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Therefore �̇� = −𝑤(𝜌 − 𝜌2
𝑒)2. When �̃�𝑗 −

(1−𝜖0)𝐶𝑑

�̃�
< 𝜌 ≤ 𝜌𝑗, we have 𝜌 − 𝜌2

𝑒 > 0 and 

due to 𝑤 − �̃� > 0 and 𝜌2
𝑒 > 𝜌𝑐. Therefore, �̇� ≤ −(𝑤 − �̃�)(𝜌 − 𝜌2

𝑒)2. From (160)-(162), we 

conclude that ∀𝜌 ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗], 

�̇� ≤ −𝛼(𝜌 − 𝜌2
𝑒)2, 

where 𝛼 = min{
𝑑−(1−𝜖0)𝐶𝑑

𝜌2
𝑒−𝐶𝑑/𝑣𝑓

, 𝑤, (𝑤 − �̃�)} > 0,  ∀𝜌(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗] which implies exponential 

stability of the equilibrium point 𝜌2
𝑒 = 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
 and exponential convergence of 𝜌(𝑡) to 𝜌2

𝑒, 

∀𝜌(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗]. 

Case d), i.e., 𝑰 ∈ 𝜴𝟒 

Consider the Lyapunov function 

𝑉(𝜌) =
(𝜌 − 𝜌𝑒)2

2
, 

where 𝜌𝑒 = 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
. Thus 

�̇� = −(𝜌 − 𝜌𝑒)(𝑞2 − 𝑞1). 

From Figure 82, it is clear that ∀𝜌 ∈ [0,
𝐶𝑑

𝑣𝑓
], 𝜌 − 𝜌𝑒 < 0 and 

𝑞2 − 𝑞1 ≤ 𝐶𝑑 − 𝑑 ≤
𝑑 − 𝐶𝑑
𝜌𝑒

(𝜌 − 𝜌𝑒), 

therefore, 

�̇� ≤ −
𝑑 − 𝐶𝑑
𝜌𝑒

(𝜌 − 𝜌𝑒)2, ∀𝜌 ∈ [0,
𝐶𝑑
𝑣𝑓
]. 

Similar to the case 𝐼 ∈ 𝛺3, we have ∀𝜌 ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗], 

�̇� ≤ −min{
𝑑 − (1 − 𝜖0)𝐶𝑑
𝜌𝑒 − 𝐶𝑑/𝑣𝑓

, 𝑤, (𝑤 − �̃�)}(𝜌 − 𝜌𝑒)2. 

Therefore, ∀𝜌 ∈ [0, 𝜌𝑗], the time derivative of the Lyapunov function satisfies 

�̇� ≤ −𝛼(𝜌 − 𝜌𝑒)2, 

 
𝑞2 − 𝑞1 = (1 − 𝜖0)𝐶𝑑 − 𝑤(𝜌

𝑗 − 𝜌) = 𝑤 [𝜌 − (𝜌𝑗 −
(1 − 𝜖0)𝐶𝑑

𝑤
)] = 𝑤(𝜌 − 𝜌2

𝑒). 
(161) 

 𝑞2 − 𝑞1 = �̃�(�̃�𝑗 − 𝜌) − 𝑤(𝜌𝑗 − 𝜌) = (𝑤 − �̃�)(𝜌 − 𝜌𝑐) ≥ (𝑤 − �̃�)(𝜌 − 𝜌2
𝑒), (162) 
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where 𝛼 = min{
𝑑−𝐶𝑑

𝜌𝑒
,
𝑑−(1−𝜖0)𝐶𝑑

𝜌𝑒−𝐶𝑑/𝑣𝑓
, 𝑤, (𝑤 − �̃�)} > 0, which implies exponential convergence to 

the equilibrium point 𝜌𝑒 , ∀𝜌(0) ∈ [0, 𝜌𝑗]. 

Case e), i.e., 𝑰 ∈ 𝜴𝟓 

Consider the Lyapunov function 

𝑉(𝜌) =
(𝜌 − min{𝑑, 𝐶}/𝑣𝑓)

2

2
. 

Then if 𝑑 < 𝐶, �̇� = −(𝜌 − 𝑑/𝑣𝑓)(𝑞2 − 𝑞1). According to Figure 83, when 0 ≤ 𝜌 ≤ 𝜌𝑐, we have 

that 𝑞1 = 𝑑, and 𝑞2 = 𝑣𝑓𝜌. Thus 

Therefore �̇� = −𝑣𝑓(𝜌 − 𝑑/𝑣𝑓)
2
. When 𝜌𝑐 < 𝜌 ≤ 𝜌

𝑗 −
𝑑

𝑤
, we have 𝜌 − 𝑑/𝑣𝑓 > 0, 𝑞1 = 𝑑 and 

𝑞2 = �̃�(�̃�
𝑗 − 𝜌). Using equation (157), we have 

Therefore �̇� ≤ −
(�̃�−𝑤)[𝜌𝑐−(𝜌

𝑗−
𝑑

𝑤
)]

𝜌𝑗−𝑑/𝑣𝑓
(𝜌 − 𝑑/𝑣𝑓)

2
. When 𝜌𝑗 −

𝑑

𝑤
< 𝜌 ≤ 𝜌𝑗 , we have 𝜌 − 𝑑/𝑣𝑓 >

0, 𝑞1 = 𝑤(𝜌
𝑗 − 𝜌) and 𝑞2 = �̃�(�̃�

𝑗 − 𝜌), which together with equation (158) gives 

𝑞2 − 𝑞1 = �̃�(�̃�𝑗 − 𝜌) − 𝑤(𝜌𝑗 − 𝜌) ≥
(�̃� − 𝑤) [𝜌𝑐 − (𝜌

𝑗 −
𝑑
𝑤)]

𝜌𝑗 − 𝑑/𝑣𝑓
(𝜌 − 𝑑/𝑣𝑓),

 

Therefore �̇� ≤ −
(�̃�−𝑤)[𝜌𝑐−(𝜌

𝑗−
𝑑

𝑤
)]

𝜌𝑗−𝑑/𝑣𝑓
(𝜌 − 𝑑/𝑣𝑓)

2
. As a result, we conclude that ∀𝜌 ∈ [0, 𝜌𝑗], 

�̇� ≤ −𝛼(𝜌 − 𝑑/𝑣𝑓)
2
, 

where 𝛼 = min{𝑣𝑓 ,
(�̃�−𝑤)[𝜌𝑐−(𝜌

𝑗−
𝑑

𝑤
)]

𝜌𝑗−𝑑/𝑣𝑓
} > 0, which guarantees exponential stability of the 

equilibrium point 𝜌𝑒 = 𝑑/𝑣𝑓 and exponential convergence of 𝜌(𝑡) to 𝜌𝑒, ∀𝜌(0) ∈ [0, 𝜌𝑗]. 

If 𝑑 ≥ 𝐶, ∀𝜌 ∈ [0, 𝜌𝑐], 𝑞1 = 𝐶, 𝑞2 = 𝑣𝑓𝜌, and ∀𝜌 ∈ (𝜌𝑐, 𝜌
𝑗], 𝑞1 = 𝑤(𝜌

𝑗 − 𝜌), 𝑞2 = �̃�(�̃�
𝑗 − 𝜌). 

Therefore 

�̇� = {
−𝑣𝑓(𝜌 − 𝜌𝑐)

2, if 𝜌 ∈ [0, 𝜌𝑐]

−(𝑤 − �̃�)(𝜌 − 𝜌𝑐)
2, if 𝜌 ∈ (𝜌𝑐, 𝜌

𝑗]
, 

 𝑞2 − 𝑞1 = 𝑣𝑓(𝜌 − 𝑑/𝑣𝑓). (163) 

 
𝑞2 − 𝑞1 = �̃�(�̃�

𝑗 − 𝜌) − 𝑑 ≥ �̃� [�̃�𝑗 − (𝜌𝑗 −
𝑑

𝑤
)] − 𝑑 ≥

(�̃� − 𝑤) [𝜌𝑐 − (𝜌
𝑗 −

𝑑
𝑤
)]

𝜌𝑗 − 𝑑/𝑣𝑓
(𝜌 − 𝑑/𝑣𝑓) 

(164) 
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which implies that �̇� ≤ −min{𝑣𝑓 , (𝑤 − �̃�)}(𝜌 − 𝜌𝑐)
2. The properties of 𝑉 and �̇� imply 

exponential stability of the equilibrium point 𝜌𝑒 = 𝜌𝑐 =
𝐶

𝑣𝑓
 and exponential convergence of 

𝜌(𝑡) to 𝜌𝑒, ∀𝜌(0) ∈ [0, 𝜌𝑗], due to 𝑤 − �̃� > 0.  
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Appendix D: Proof of Theorem 1.4 

For the proof of Theorem 1.4, we use the following two lemmas: Lemma 4.1 gives the region of 
𝜌𝑒 within the set 𝑆. For a set 𝐴 ⊂ ℜ𝑁 and a point 𝑥0 ∈ ℜ

𝑁, the distance between 𝑥0 and 𝐴 is 
defined as: 

𝑑(𝑥0, 𝐴) = inf
𝑥∈𝐴

∥ 𝑥 − 𝑥0 ∥. 

Then we have the following lemma. 

Lemma 4.1. Let 𝜌𝑒 be an equilibrium state of system (51) then we have the following results: 

a) If 𝐶𝑑 < 𝐶, i.e., 𝐼 ∈ ⋃ 𝛺𝑖
4
𝑖=1 , then 𝜌𝑒 ∈ 𝑆𝐼, where 𝑆𝐼 = {𝜌|

min{𝑑,𝐶}

𝑣𝑓
≤ 𝜌𝑖 ≤ 𝜌

𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, 𝑖 = 1,2, . . . , 𝑁} ⊂ 𝑆. Furthermore, ∀𝜌(0) ∈ 𝑆, 𝑑(𝜌(𝑡), 𝑆𝐼) converges to 0 

exponentially fast. 

b) If 𝐶𝑑 ≥ 𝐶, i.e., 𝐼 ∈ 𝛺5, then 𝜌𝑒 ∈ 𝑆‾𝐼, where 𝑆‾𝐼 = {𝜌|
min{𝑑,𝐶}

𝑣𝑓
≤ 𝜌𝑖 ≤ 𝜌𝑐 , 𝑖 = 1,2, . . . , 𝑁} ⊂

𝑆. Furthermore, ∀𝜌(0) ∈ 𝑆, 𝑑(𝜌(𝑡), 𝑆‾𝐼) converges to 0 exponentially fast. 

Proof of Lemma 4.1: 

a) For 𝐼 ∈ ⋃ 𝛺𝑖
4
𝑖=1 , we first show that 𝜌𝑖

𝑒 ≥
min{𝑑,𝐶}

𝑣𝑓
, for 𝑖 = 1,2, . . . , 𝑁. Assume that 0 ≤ 𝜌1

𝑒 <

min{𝑑,𝐶}

𝑣𝑓
, then 𝑤(𝜌𝑗 − 𝜌1

𝑒) ≥ 𝐶 due to 𝜌1
𝑒 <

min{𝑑,𝐶}

𝑣𝑓
≤ 𝜌𝑐. Therefore the corresponding 

equilibrium flow rate 

𝑞1
𝑒 = min{𝑑, 𝐶, 𝑤(𝜌𝑗 − 𝜌1

𝑒)} = min{𝑑, 𝐶}, 

𝑞2
𝑒 = min{𝑣𝑓𝜌1

𝑒 , �̃�(�̃�𝑗 − 𝜌1
𝑒), 𝐶, 𝑤(𝜌𝑗 − 𝜌2

𝑒)} ≤ 𝑣𝑓𝜌1
𝑒 , 

which implies that 

�̇�1 = 𝑞1
𝑒 − 𝑞2

𝑒 ≥ min{𝑑, 𝐶} − 𝑣𝑓𝜌1
𝑒 > 0, as 𝜌1

𝑒 <
min{𝑑, 𝐶}

𝑣𝑓
, 

which violates the equilibrium condition (43) hence 𝜌1
𝑒 ≥

min{𝑑,𝐶}

𝑣𝑓
. For any 𝑖 = 1,2, . . , 𝑁 − 1, 

assume 𝜌𝑖
𝑒 ≥

min{𝑑,𝐶}

𝑣𝑓
 and check the property of 𝜌𝑖+1

𝑒 . If 0 ≤ 𝜌𝑖+1
𝑒 <

min{𝑑,𝐶}

𝑣𝑓
, we have 𝑣𝑓𝜌𝑖+1

𝑒 <

min{𝑑, 𝐶} < 𝐶 < 𝑤(𝜌𝑗 − 𝜌𝑖+1
𝑒 ). Thus 

𝑞𝑖+1
𝑒 = min{𝑣𝑓𝜌𝑖

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖
𝑒), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖+1

𝑒 )} = min{𝑣𝑓𝜌𝑖
𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖

𝑒)}, 

𝑞𝑖+2
𝑒 = min{𝑣𝑓𝜌𝑖+1

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖+1
𝑒 ), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖+2

𝑒 )} ≤ 𝑣𝑓𝜌𝑖+1
𝑒 < min{𝑑, 𝐶}. 
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If 𝑞𝑖+1
𝑒 = �̃�(�̃�𝑗 − 𝜌𝑖

𝑒), then �̃�(�̃�𝑗 − 𝜌𝑖
𝑒) ≤ 𝑣𝑓𝜌𝑖

𝑒 , which implies 𝜌𝑖
𝑒 ≥ 𝜌𝑐. Since 𝜌𝑖

𝑒 is the 

equilibrium density in section 𝑖, we have 𝑞𝑖
𝑒 = 𝑞𝑖+1

𝑒 , and 

𝑤(𝜌𝑗 − 𝜌𝑖
𝑒) ≥ 𝑞𝑖

𝑒 = 𝑞𝑖+1
𝑒 = �̃�(�̃�𝑗 − 𝜌𝑖

𝑒), 

which implies 𝜌𝑖
𝑒 ≤ 𝜌𝑐. Thus 𝜌𝑖

𝑒 = 𝜌𝑐 and 𝑞𝑖
𝑒 = 𝑞𝑖+1

𝑒 = �̃�(�̃�𝑗 − 𝜌𝑐) = 𝐶 ≥ min{𝑑, 𝐶} > 𝑞𝑖+2
𝑒 . If 

𝑞𝑖+1
𝑒 = 𝑣𝑓𝜌𝑖

𝑒 , then 𝑞𝑖+1
𝑒 ≥ min{𝑑, 𝐶} > 𝑞𝑖+2

𝑒  due to 𝜌𝑖
𝑒 ≥

min{𝑑,𝐶}

𝑣𝑓
. Therefore, for all possible 

𝑞𝑖+1 = min{𝑣𝑓𝜌𝑖
𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖

𝑒)}, we have 𝑞𝑖+1
𝑒 > 𝑞𝑖+2

𝑒 , which violates the equilibrium condition 

(43). Therefore, the assumption 0 ≤ 𝜌𝑖+1
𝑒 <

min{𝑑,𝐶}

𝑣𝑓
 is invalid, which implies that 𝜌𝑖+1

𝑒 ≥

min{𝑑,𝐶}

𝑣𝑓
. By mathematical induction, we know that 

Then we show that 𝜌𝑖
𝑒 ≤ 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, for 𝑖 = 1,2, . . . , 𝑁. Assume that 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
< 𝜌𝑁

𝑒 ≤

𝜌𝑗 , then 

𝑞𝑁+1
𝑒 = min{(1 − 𝜖0)𝐶𝑑, �̃�(�̃�

𝑗 − 𝜌𝑁
𝑒 )},

𝑞𝑁
𝑒 = min{𝑣𝑓𝜌𝑁−1

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑁−1
𝑒 ), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑁

𝑒 )} ≤ 𝑤(𝜌𝑗 − 𝜌𝑁
𝑒 ).

 

Since 𝜌𝑁
𝑒 > 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
> 𝜌𝑐, we have 𝑤(𝜌𝑗 − 𝜌𝑁

𝑒 ) < (1 − 𝜖0)𝐶𝑑 and 𝑤(𝜌𝑗 − 𝜌𝑁
𝑒 ) <

�̃�(�̃�𝑗 − 𝜌𝑁
𝑒 ). Therefore 𝑞𝑁

𝑒 ≤ 𝑤(𝜌𝑗 − 𝜌𝑁
𝑒 ) < 𝑞𝑁+1

𝑒 , which contradicts the the equilibrium 

condition (43). Thus 𝜌𝑁
𝑒 ≤ 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
. 

Assume 𝜌𝑖
𝑒 ≤ 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, for any 𝑖 = 2,3, . . . , 𝑁, we check the property of 𝜌𝑖−1

𝑒 . If 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
< 𝜌𝑖−1

𝑒 ≤ 𝜌𝑗 , then �̃�(�̃�𝑗 − 𝜌𝑖−1
𝑒 ) < 𝐶 < 𝑣𝑓𝜌𝑖−1

𝑒  as 𝜌𝑖−1
𝑒 > 𝜌𝑐. Therefore 

𝑞𝑖
𝑒 = min{𝑣𝑓𝜌𝑖−1

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖−1
𝑒 ), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖

𝑒)} = min{�̃�(�̃�𝑗 − 𝜌𝑖−1
𝑒 ),𝑤(𝜌𝑗 − 𝜌𝑖

𝑒)},

𝑞𝑖−1
𝑒 = min{𝑣𝑓𝜌𝑖−2

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖−2
𝑒 ), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖−1

𝑒 )} ≤ 𝑤(𝜌𝑗 − 𝜌𝑖−1
𝑒 ).

 

Since 𝜌𝑖
𝑒 ≤ 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
< 𝜌𝑖−1

𝑒 , we have 𝑤(𝜌𝑗 − 𝜌𝑖−1
𝑒 ) < �̃�(�̃�𝑗 − 𝜌𝑖−1

𝑒 ) and 𝑤(𝜌𝑗 − 𝜌𝑖−1
𝑒 ) <

(1 − 𝜖0)𝐶𝑑 ≤ 𝑤(𝜌
𝑗 − 𝜌𝑖

𝑒). Thus 𝑞𝑖−1
𝑒 < 𝑞𝑖

𝑒, which violates the equilibrium condition (43). 

Therefore 𝜌𝑖−1
𝑒 ≤ 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
. By mathematical induction, we have 

Combining the two inequalities (165)-(166), we can conclude 

min{𝑑, 𝐶}

𝑣𝑓
≤ 𝜌𝑖

𝑒 ≤ 𝜌𝑗 −
(1 − 𝜖0)𝐶𝑑

𝑤
, 𝑖 = 1,2, . . . , 𝑁. 

 
𝜌𝑖
𝑒 ≥

min{𝑑, 𝐶}

𝑣𝑓
, 𝑖 = 1,2, . . . , 𝑁. 

(165) 

 
𝜌𝑖
𝑒 ≤ 𝜌𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

, 𝑖 = 1,2, . . . , 𝑁. 
(166) 
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To show that 𝑑(𝜌(𝑡), 𝑆𝐼) converges to 0 exponentially fast ∀𝜌(0) ∈ 𝑆, it is equivalent to show 
that ∀𝛿 > 0, ∃𝑇 > 0, such that ∀𝑡 > 𝑇 

and 𝑑(𝜌(𝑡), 𝑆𝐼) is bounded from above by a decaying exponential function. 

First we show the left half of inequality (167). Since 𝑞1 = min{𝑑, 𝐶, 𝑤(𝜌
𝑗 − 𝜌1)} and 𝑞2 ≤ 𝑣𝑓𝜌1, 

we have 

If ∃𝑡0 ≥ 0, such that 𝜌1(𝑡0) ≥
min{𝑑,𝐶}

𝑣𝑓
, then for all 𝑡 ≥ 𝑡0 we have the following result: since 

𝜌1(𝑡) is uniformly continuous, if 𝜌1(𝑡) keeps decreasing and 𝜌1(𝑡1) =
min{𝑑,𝐶}

𝑣𝑓
 for some 𝑡1 ≥ 𝑡0, 

then from (168) we have �̇�1(𝑡1) ≥ 0, which implies that 𝜌1(𝑡) will no longer decrease and 

𝜌1(𝑡) ≥
min{𝑑,𝐶}

𝑣𝑓
, ∀𝑡 ≥ 𝑡0. Therefore ∀𝛿1 > 0 and ∀𝑡 ≥ 𝑡0, 𝜌1(𝑡) ≥

min{𝑑,𝐶}

𝑣𝑓
− 𝛿1. 

If ∀𝑡 ≥ 0, 𝜌1(𝑡) <
min{𝑑,𝐶}

𝑣𝑓
, then in the region 𝜌1(𝑡) <

min{𝑑,𝐶}

𝑣𝑓
, we have 

By Lemma 3.2.4 in (P. A. Ioannou and Sun 2012), we have 

The right side of (170) converges to 
min{𝑑,𝐶}

𝑣𝑓
 exponentially fast, therefore ∀𝛿1 > 0, ∃𝑇1 > 0, 

such that ∀𝑡 > 𝑇1, 𝜌1(𝑡) ≥
min{𝑑,𝐶}

𝑣𝑓
− 𝛿1. 

For 𝑖 = 1,2, . . . , 𝑁 − 1, we assume 𝜌𝑖 ≥
min{𝑑,𝐶}

𝑣𝑓
− 𝛿𝑖 , ∀𝑡 > 0, where 𝛿𝑖 > 0, then we examine 

the dynamics of 𝜌𝑖+1. We have 

�̇�𝑖+1 = 𝑞𝑖+1 − 𝑞𝑖+2 ≥ min{𝑣𝑓𝜌𝑖, �̃�(�̃�
𝑗 − 𝜌𝑖), 𝐶, 𝑤(𝜌

𝑗 − 𝜌𝑖+1)} − 𝑣𝑓𝜌𝑖+1. 

Since 𝜌𝑖 ≥
min{𝑑,𝐶}

𝑣𝑓
− 𝛿𝑖, we have 𝑣𝑓𝜌𝑖 ≥ min{𝑑, 𝐶} − 𝑣𝑓𝛿𝑖, therefore 

 min{𝑑, 𝐶}

𝑣𝑓
− 𝛿 < 𝜌𝑖(𝑡) < 𝜌

𝑗 −
(1 − 𝜖0)𝐶𝑑

𝑤
+ 𝛿,  𝑖 = 1,2, . . . , 𝑁 

(167) 

 �̇�1 = 𝑞1 − 𝑞2 ≥ min{𝑑, 𝐶, 𝑤(𝜌
𝑗 − 𝜌1)} − 𝑣𝑓𝜌1. (168) 

 
�̇�1(𝑡) ≥ min{𝑑, 𝐶} − 𝑣𝑓𝜌1 = −𝑣𝑓 (𝜌1 −

min{𝑑, 𝐶}

𝑣𝑓
). 

(169) 

 
𝜌1(𝑡) ≥ 𝑒

−𝑣𝑓𝑡 [𝜌1(0) −
min{𝑑, 𝐶}

𝑣𝑓
] +

min{𝑑, 𝐶}

𝑣𝑓
, ∀𝑡 ≥ 0. 

(170) 

 �̇�𝑖+1 ≥ min{min{𝑑, 𝐶} − 𝑣𝑓𝛿𝑖, �̃�(�̃�
𝑗 − 𝜌𝑖), 𝑤(𝜌

𝑗 − 𝜌𝑖+1)} − 𝑣𝑓𝜌𝑖+1. (171) 
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Similar to (168), we can show that if ∃𝑡0 ≥ 0, such that 𝜌𝑖+1(𝑡) ≥
min{𝑑,𝐶}

𝑣𝑓
− 𝛿𝑖, then 𝜌𝑖+1(𝑡) ≥

min{𝑑,𝐶}

𝑣𝑓
− 𝛿𝑖, ∀𝑡 ≥ 𝑡0, that is, ∀𝛿𝑖+1 > 𝛿𝑖 and ∀𝑡 ≥ 𝑡0, 𝜌𝑖(𝑡) >

min{𝑑,𝐶}

𝑣𝑓
− 𝛿𝑖+1. 

If 𝜌𝑖+1(𝑡) <
min{𝑑,𝐶}

𝑣𝑓
− 𝛿𝑖, ∀𝑡 ≥ 0, then in the region 𝜌𝑖+1(𝑡) <

min{𝑑,𝐶}

𝑣𝑓
− 𝛿𝑖, we have 

�̇�𝑖+1(𝑡) ≥ min{𝑑, 𝐶} − 𝑣𝑓𝛿𝑖 − 𝑣𝑓𝜌𝑖+1 = −𝑣𝑓 (𝜌𝑖+1 −
min{𝑑, 𝐶}

𝑣𝑓
+ 𝛿𝑖). 

By Lemma 3.2.4 in (P. A. Ioannou and Sun 2012), we have 

Similarly, the right hand side of equation (172) converges exponentially fast to 
min{𝑑,𝐶}

𝑣𝑓
− 𝛿𝑖. 

Therefore, ∀𝛿𝑖+1 > 𝛿𝑖, ∃𝑇𝑖+1 > 0, such that ∀𝑡 > 𝑇𝑖+1, 𝜌𝑖(𝑡) >
min{𝑑,𝐶}

𝑣𝑓
− 𝛿𝑖+1. By 

mathematical induction, we can conclude that for 𝑖 = 1,2, . . . , 𝑁, ∀𝛿𝑖 > 0, ∃𝑇𝑖 > 0, such that 

∀𝑡 > ∑ 𝑇𝑗
𝑖
𝑗=1 , 𝜌𝑖(𝑡) ≥

min{𝑑,𝐶}

𝑣𝑓
− 𝛿𝑖. If we take 𝛿𝑁 < 𝛿, 𝑇1 + 𝑇2+. . . +𝑇𝑁 < 𝑇, then the left side 

of inequality (167) holds. 

Next we prove the right half of the inequality (167). Since 𝑞𝑁+1 = min{𝑣𝑓𝜌𝑁 , �̃�(�̃�
𝑗 − 𝜌𝑁), (1 −

𝜖(𝜌𝑁))𝐶𝑑} and 𝑞𝑁 < min{𝐶,𝑤(𝜌
𝑗 − 𝜌𝑁)}, we have 

�̇�𝑁 = 𝑞𝑁 − 𝑞𝑁+1 ≤ min{𝐶, 𝑤(𝜌
𝑗 − 𝜌𝑁)} − min{𝑣𝑓𝜌𝑁 , �̃�(�̃�

𝑗 − 𝜌𝑁), (1 − 𝜖(𝜌𝑁))𝐶𝑑}. 

Similar to (168), we can show that if ∃𝑡0 ≥ 0, such that 𝜌𝑁(𝑡0) ≤ 𝜌
𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, then 𝜌𝑁(𝑡0) ≤

𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, ∀𝑡 ≥ 𝑡0, that is, ∀0 < 𝛿𝑁 < 𝛿, and ∀𝑡 ≥ 0, 𝜌𝑁(𝑡) ≤ 𝜌

𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑁. 

If 𝜌𝑁(𝑡) > 𝜌
𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, ∀𝑡 ≥ 0, then in the region 𝜌𝑁 > 𝜌

𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, we have 

�̇�𝑁 ≤ (�̃� − 𝑤)(𝜌𝑁 − (𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

)). 

By Lemma 3.2.4 in (P. A. Ioannou and Sun 2012), we have 

 
𝜌𝑖+1(𝑡) ≥ 𝑒

−𝑣𝑓𝑡 [𝜌𝑖+1(0) −
min{𝑑, 𝐶}

𝑣𝑓
+ 𝛿𝑖] +

min{𝑑, 𝐶}

𝑣𝑓
− 𝛿𝑖, ∀𝑡 ≥ 0. 

(172) 

 
𝜌𝑁(𝑡) ≤ 𝑒

(�̃�−𝑤)𝑡 [𝜌𝑁(0) − (𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

)] + (𝜌𝑗 −
(1 − 𝜖0)𝐶𝑑

𝑤
) , ∀𝑡

≥ 0. 

(173) 
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Since �̃� − 𝑤 < 0, the right side of (173) converges to 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
 exponentially fast. 

Therefore, ∀0 < 𝛿𝑁 < 𝛿, ∃𝑇𝑁 > 0, such that ∀𝑡 > 𝑇𝑁, 𝜌𝑁(𝑡) ≤ 𝜌
𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑁. 

For 𝑖 = 1, . . . , 𝑁 − 1, we assume 𝜌𝑖+1 ≤ 𝜌
𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑖+1, ∀𝑡 > 0, where 𝛿𝑖+1 > 0, then we 

check the dynamics of 𝜌𝑖. We have 

�̇�𝑖 = 𝑞𝑖 − 𝑞𝑖+1 ≤ min{𝐶,𝑤(𝜌
𝑗 − 𝜌𝑖)} − min{𝑣𝑓𝜌𝑖 , �̃�(�̃�

𝑗 − 𝜌𝑖), 𝐶, 𝑤(𝜌
𝑗 − 𝜌𝑖+1)}. 

Since 𝜌𝑖+1 ≤ 𝜌
𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑖+1, we have 𝑤(𝜌𝑗 − 𝜌𝑖+1) ≥ (1 − 𝜖0)𝐶𝑑 − 𝑤𝛿𝑖+1. Thus 

�̇�𝑖 ≤ min{𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖)} − min{𝑣𝑓𝜌𝑖 , �̃�(�̃�
𝑗 − 𝜌𝑖), (1 − 𝜖0)𝐶𝑑 − 𝑤𝛿𝑖+1}. 

Thus, we can show that if ∃𝑡0 ≥ 0, such that 𝜌𝑖(𝑡0) ≤ 𝜌
𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑖+1, then 𝜌𝑖(𝑡0) ≤ 𝜌

𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑖+1, ∀𝑡 ≥ 𝑡0, that is, ∀𝛿𝑖 > 𝛿𝑖+1, and ∀𝑡 ≥ 0, 𝜌𝑖(𝑡) ≤ 𝜌

𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑖. 

If 𝜌𝑖(𝑡0) > 𝜌
𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑖+1, ∀𝑡 ≥ 0, then in the region 𝜌𝑖 > 𝜌

𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑖+1, we have 

�̇�𝑖 ≤ (�̃� − 𝑤)(𝜌𝑁 − (𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

) − 𝛿𝑖+1). 

By Lemma 3.2.4 in (P. A. Ioannou and Sun 2012), we have 

Thus, the right hand side of equation (174) converges exponentially fast to 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑖+1. 

Therefore, ∀𝛿𝑖 > 𝛿𝑖+1, ∃𝑇𝑖 > 0, such that ∀𝑡 > 𝑇𝑖, 𝜌𝑖(𝑡) ≤ 𝜌
𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑖. 

By mathematical induction, we can conclude that for 𝑖 = 1,2, . . . , 𝑁, ∀𝛿𝑖 > 0, ∃𝑇𝑖 > 0, such 

that ∀𝑡 > ∑ 𝑇𝑗
𝑖
𝑗=1 , 𝜌𝑖(𝑡) ≤ 𝜌

𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿𝑖. If we take 𝛿1 < 𝛿, 𝑇1 + 𝑇2+. . . +𝑇𝑁 < 𝑇, then the 

right side of inequality (167) holds. Therefore, 𝑑(𝜌(𝑡), 𝑆𝐼) converges to 0 exponentially fast for 
all 𝜌(0) in the feasible set 𝑆. 

b) Part b) of Lemma 4.1 can be proved in a similar manner.  

Specifically, when 𝐼 ∈ 𝛺2, the equilibrium points of system (51) satisfy the properties given by 
the following lemma. 

 
𝜌𝑖(𝑡) ≤ 𝑒

(�̃�−𝑤)𝑡 [𝜌𝑖(0) − (𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

+ 𝛿𝑖+1)] + (𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

+ 𝛿𝑖+1) 
(174) 
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Lemma 4.2. Let 𝐼 ∈ 𝛺2. If 𝜌𝑒 is an equilibrium state of system (51), then the corresponding 
equilibrium flow rate is 𝑞1

𝑒 = 𝑞2
𝑒 =. . . = 𝑞𝑁+1

𝑒 = 𝑑 = (1 − 𝜖0)𝐶𝑑. Furthermore, 𝜌𝑒 has the 
following properties: 

c) For 𝑖 = 1,2, . . . , 𝑁 − 1, if 
𝑑

𝑣𝑓
< 𝜌𝑖

𝑒 ≤ 𝜌𝑗 −
𝑑

𝑤
, then 𝜌𝑘

𝑒 = 𝜌𝑗 −
𝑑

𝑤
, for all 𝑖 < 𝑘 ≤ 𝑁. 

d) For 𝑖 = 2,3, . . . , 𝑁, if 
𝑑

𝑣𝑓
≤ 𝜌𝑖

𝑒 < 𝜌𝑗 −
𝑑

𝑤
, then 𝜌𝑘

𝑒 =
𝑑

𝑣𝑓
, for all 1 ≤ 𝑘 < 𝑖. 

Proof of Lemma 4.2: 

Assume 𝜌𝑒 is an equilibrium state of system (51) then using Lemma 4.1, we have 
𝑑

𝑣𝑓
≤ 𝜌𝑖

𝑒 ≤

𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
= 𝜌𝑗 −

𝑑

𝑤
, 𝑖 = 1,2, . . . , 𝑁, therefore 

𝑞1
𝑒 = min{𝑑, 𝐶, 𝑤(𝜌𝑗 − 𝜌1

𝑒)} ≤ 𝑑, 

𝑞𝑁+1
𝑒 = min{𝑣𝑓𝜌𝑁

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑁
𝑒 ), (1 − 𝜖(𝜌𝑁

𝑒 ))𝐶𝑑} ≥ 𝑑. 

Using the equilibrium condition (53) we have that the equilibrium flow 𝑞1
𝑒 = 𝑞𝑁+1

𝑒 = 𝑑. 
Therefore 𝑞𝑖

𝑒 = 𝑑, for 𝑖 = 1,2, . . . , 𝑁 + 1. 

For any 𝑖 = 1,2, . . . , 𝑁 − 1, if 
𝑑

𝑣𝑓
< 𝜌𝑖

𝑒 ≤ 𝜌𝑗 −
𝑑

𝑤
, we have 𝑣𝑓𝜌𝑖

𝑒 > 𝑑 and �̃�(�̃�𝑗 − 𝜌𝑖
𝑒) ≥

�̃�[�̃�𝑗 − (𝜌𝑗 − 𝑑/𝑤)] > 𝑤[𝜌𝑗 − (𝜌𝑗 − 𝑑/𝑤)] = 𝑑, therefore 

𝑑 = 𝑞𝑖+1
𝑒 = min{𝑣𝑓𝜌𝑖

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖
𝑒), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖+1

𝑒 )} = 𝑤(𝜌𝑗 − 𝜌𝑖+1
𝑒 ), 

which gives that 𝜌𝑖+1
𝑒 = 𝜌𝑗 − 𝑑/𝑤. By mathematical induction, 𝜌𝑘

𝑒 = 𝜌𝑗 −
𝑑

𝑤
, for all 𝑖 < 𝑘 ≤ 𝑁. 

For any 𝑖 = 2,3, . . . , 𝑁, if 
𝑑

𝑣𝑓
≤ 𝜌𝑖

𝑒 < 𝜌𝑗 −
𝑑

𝑤
, we have that 𝑤(𝜌𝑗 − 𝜌𝑖

𝑒) > 𝑑, therefore 

𝑑 = 𝑞𝑖
𝑒 = min{𝑣𝑓𝜌𝑖−1

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖−1
𝑒 ), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖

𝑒)} = min{𝑣𝑓𝜌𝑖−1
𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖−1

𝑒 )}. 

If 𝑞𝑖
𝑒 = �̃�(�̃�𝑗 − 𝜌𝑖−1

𝑒 ) = 𝑑, then 𝑞𝑖−1
𝑒 ≤ 𝑤(𝜌𝑗 − 𝜌𝑖−1

𝑒 ) < �̃�(�̃�𝑗 − 𝜌𝑖−1
𝑒 ) < 𝑑, which contradicts 

the fact that 𝑞𝑖−1
𝑒 = 𝑑, therefore 𝑞𝑖

𝑒 = 𝑣𝑓𝜌𝑖−1
𝑒 = 𝑑, 𝜌𝑖−1

𝑒 =
𝑑

𝑣𝑓
. By mathematical induction, 𝜌𝑘 =

𝑑

𝑣𝑓
, for all 1 ≤ 𝑘 < 𝑖. 0◻ 

Using the above two lemmas the proof of Theorem 1.4 is completed as follows: 
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Proof of Theorem 1.4: 

From the part a) of Lemma Lemma 4.1, we know that for 𝐼 ∈ ⋃ 𝛺𝑖
4
𝑖=1  if 𝜌𝑒 is an equilibrium 

state of system (51), then 𝜌𝑒 ∈ 𝑆𝐼 and 𝑑(𝜌(𝑡), 𝑆𝐼) converges to 0 exponentially fast, ∀𝜌(0) ∈ 𝑆. 
Therefore, we only need to find all equilibrium states of system (51) in 𝑆𝐼 and analyze the 

dynamics of 𝜌(𝑡) for all 𝜌(0) ∈ 𝑆𝛿
𝐼 , where 

𝑆𝛿
𝐼 = {𝜌|

min{𝑑, 𝐶}

𝑣𝑓
− 𝛿 ≤ 𝜌𝑖 ≤ 𝜌𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

+ 𝛿, 𝑖 = 1,2, . . . , 𝑁} 

and 𝛿 > 0 can be arbitrarily small. 

From the part b) of Lemma 4.1, we know that when 𝐼 ∈ 𝛺5, we only need to find all equilibrium 

states of system (51) in the set 𝑆‾𝐼 and analyze the dynamics of 𝜌(𝑡) for all 𝜌(0) in the set 𝑆‾𝛿
𝐼 , 

where 

𝑆‾𝛿
𝐼 = {𝜌|

min{𝑑, 𝐶}

𝑣𝑓
− 𝛿 ≤ 𝜌𝑖 ≤ 𝜌𝑐 + 𝛿, 𝑖 = 1,2, . . . , 𝑁}. 

Now we prove the statements of Theorem 1.4 from a) to e) respectively. 

a) When 𝐼 ∈ 𝛺1, 𝑑 < (1 − 𝜖0)𝐶𝑑. By Lemma 4.1, we have that 
min{𝑑,𝐶}

𝑣𝑓
≤ 𝜌𝑖

𝑒 ≤ 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, 

therefore 𝑤(𝜌𝑗 − 𝜌𝑖
𝑒) ≥ (1 − 𝜖0)𝐶𝑑 > 𝑑, 𝑖 = 1,2, . . . , 𝑁. Thus 𝑞1

𝑒 = min{𝑑, 𝐶, 𝑤(𝜌𝑗 − 𝜌1
𝑒)} =

𝑑. Using the equilibrium condition (53) we have 

𝑞𝑖
𝑒 = 𝑑, for 𝑖 = 1,2, . . . , 𝑁 + 1 

Now we show that 𝜌𝑖
𝑒 = 𝑑/𝑣𝑓, for 𝑖 = 1,2, . . . , 𝑁. For 𝑖 = 1,2, . . . , 𝑁 − 1, 𝑞𝑖+1

𝑒 =

min{𝑣𝑓𝜌𝑖
𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖

𝑒), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖+1
𝑒 )}. If 𝜌𝑐 ≤ 𝜌𝑖

𝑒 ≤ 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, we have 

𝑤(𝜌𝑗 − 𝜌𝑖+1
𝑒 ) ≥ (1 − 𝜖0)𝐶𝑑 > 𝑑, 

𝑣𝑓𝜌𝑖
𝑒 ≥ 𝐶 ≥ �̃�(�̃�𝑗 − 𝜌𝑖

𝑒) ≥ 𝑤(𝜌𝑗 − 𝜌𝑖
𝑒) > (1 − 𝜖0)𝐶𝑑 > 𝑑, 

which implies that 𝑞𝑖+1
𝑒 > 𝑑, therefore the assumption 𝜌𝑐 ≤ 𝜌𝑖

𝑒 ≤ 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
 is invalid. 

Hence 𝑑/𝑣𝑓 ≤ 𝜌𝑖
𝑒 < 𝜌𝑐, which gives that �̃�(�̃�𝑗 − 𝜌𝑖

𝑒) > 𝐶 > 𝑣𝑓𝜌𝑖
𝑒, thus 

𝑞𝑖+1
𝑒 = min{𝑣𝑓𝜌𝑖

𝑒 , 𝑤(𝜌𝑗 − 𝜌𝑖+1
𝑒 )}. 

By Lemma 4.1, we have 𝜌𝑖+1
𝑒 ≤ 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, thus 𝑤(𝜌𝑗 − 𝜌𝑖+1

𝑒 ) ≥ (1 − 𝜖0)𝐶𝑑 > 𝑑. Solving 

the equation 𝑞𝑖+1
𝑒 = 𝑑 gives the unique equilibrium density 𝜌𝑖

𝑒 = 𝑑/𝑣𝑓. Therefore, we have 

𝜌𝑖
𝑒 = 𝑑/𝑣𝑓 , 𝑖 = 1, . . . , 𝑁 − 1. For 𝑖 = 𝑁, we have 𝑞𝑁+1

𝑒 = min{𝑣𝑓𝜌𝑁
𝑒 , �̃�(�̃�𝑗 − 𝜌𝑁

𝑒 ), (1 −

𝜖(𝜌𝑁
𝑒 ))𝐶𝑑}. If 𝐶𝑑/𝑣𝑓 < 𝜌𝑁

𝑒 ≤ 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, we have 𝑞𝑁+1

𝑒 = (1 − 𝜖0)𝐶𝑑 > 𝑑, therefore the 
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assumption 𝐶𝑑/𝑣𝑓 < 𝜌𝑁
𝑒 ≤ 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
 is invalid, which together with Lemma 4.1 implies that 

𝑑/𝑣𝑓 ≤ 𝜌𝑁
𝑒 ≤ 𝐶𝑑/𝑣𝑓. Therefore 𝑞𝑁+1

𝑒 = 𝑣𝑓𝜌𝑁
𝑒 . Solving the equation 𝑞𝑁+1

𝑒 = 𝑑 gives a unique 

solution 𝜌𝑁
𝑒 = 𝑑/𝑣𝑓. Therefore, the point 

𝑑

𝑣𝑓
× 𝟏 is the unique equilibrium state of system (51) 

when 𝐼 ∈ 𝛺1. 

Using Lemma 4.1, we have that for all 𝜌(0) ∈ 𝑆𝛿
𝐼 , 𝑑/𝑣𝑓 − 𝛿 < 𝜌𝑖(𝑡) < 𝜌

𝑗 − (1 − 𝜖0)𝐶𝑑/𝑤 +

𝛿, ∀𝑡 ≥ 0, 𝛿 > 0. Therefore 

𝑤(𝜌𝑗 − 𝜌𝑖) > 𝑤[𝜌𝑗 − (𝜌𝑗 − (1 − 𝜖0)𝐶𝑑/𝑤 + 𝛿)] = (1 − 𝜖0)𝐶𝑑 − 𝑤𝛿 

and 

�̃�(�̃�𝑗 − 𝜌𝑖) > �̃�[�̃�𝑗 − (𝜌𝑗 − (1 − 𝜖0)𝐶𝑑/𝑤 + 𝛿)] > 𝑤[𝜌
𝑗 − (𝜌𝑗 − (1 − 𝜖0)𝐶𝑑/𝑤 + 𝛿)]

= (1 − 𝜖0)𝐶𝑑 − 𝑤𝛿,
 

for 𝑖 = 1,2, . . . , 𝑁. Since (1 − 𝜖0)𝐶𝑑 > 𝑑, taking 𝛿 to be sufficiently small, we have 

(1 − 𝜖0)𝐶𝑑 − 𝑤𝛿 > 𝑑. Therefore 𝑞1 = min{𝑑, 𝐶, 𝑤(𝜌
𝑗 − 𝜌1)} = 𝑑 and 

Combine (51) and (175), we can show that 

�̇�1

{
  
 

  
 = −𝑣𝑓 (𝜌1 −

𝑑

𝑣𝑓
) if 

𝑑

𝑣𝑓
− 𝛿 < 𝜌1 <

𝑑

𝑣𝑓

= 0 if 𝜌1 =
𝑑

𝑣𝑓

≤ −𝛼 (𝜌1 −
𝑑

𝑣𝑓
) if 

𝑑

𝑣𝑓
< 𝜌1 < 𝜌

𝑗 − (1 − 𝜖0)𝐶𝑑/𝑤 + 𝛿

, 

where 𝛼 = min{𝑣𝑓 ,
(1−𝜖0)𝐶𝑑−𝑤𝛿−𝑑

𝜌𝑗−𝑑/𝑣𝑓
} > 0, which implies that for all 𝜌(0) ∈ 𝑆𝛿

𝐼 , 𝜌1(𝑡) converges to 

𝑑/𝑣𝑓 exponentially fast. 

Based on the convergence of 𝜌1, we can show that 𝜌2 also converges to 𝑑/𝑣𝑓 exponentially 

fast, followed by 𝜌3 through 𝜌𝑁. Therefore, ∀𝜌(0) ∈ 𝑆, 𝜌(𝑡) converges to 
𝑑

𝑣𝑓
× 𝟏 exponentially 

fast. 

b) When 𝐼 ∈ 𝛺2, 𝑑 = (1 − 𝜖0)𝐶𝑑. Using Lemma 4.2, we have that the equilibrium flow rate 

𝑞𝑖
𝑒 = 𝑑 = (1 − 𝜖0)𝐶𝑑, for 𝑖 = 1,2, . . . , 𝑁 + 1. If 0 ≤ 𝜌𝑁

𝑒 ≤
𝐶𝑑

𝑣𝑓
, then 𝑞𝑁+1

𝑒 = 𝑑 gives 𝜌𝑁
𝑒 =

𝑑

𝑣𝑓
. By 

part b) of Lemma 4.2, we have 𝜌𝑖
𝑒 =

𝑑

𝑣𝑓
, 𝑖 = 1,2, . . . , 𝑁 − 1. Therefore 𝜌𝑒 = 𝑑/𝑣𝑓 × 𝟏 is a 

potential equilibrium point of system (51). Substituting 𝜌𝑒 = 𝑑/𝑣𝑓 × 𝟏 into equation (51), we 

 𝜌1̇ = 𝑞1 − 𝑞2 = 𝑑 −min{𝑣𝑓𝜌1, �̃�(�̃�
𝑗 − 𝜌1), 𝐶, 𝑤(𝜌

𝑗 − 𝜌2)}. (175) 
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have 𝑞𝑖
𝑒 = 𝑑, for 𝑖 = 1,2, . . . , 𝑁 + 1. Therefore, 𝜌𝑒 = 𝑑/𝑣𝑓 × 𝟏 is the only equilibrium state in 

the region 0 ≤ 𝜌𝑁
𝑒 ≤

𝐶𝑑

𝑣𝑓
. 

If 𝜌𝑁
𝑒 ∈ (

𝐶𝑑

𝑣𝑓
, 𝜌𝑗 −

𝑑

𝑤
), according to Lemma 4.2, we have that 𝜌1

𝑒 =. . . = 𝜌𝑁−1
𝑒 =

𝑑

𝑣𝑓
. Substituting 

any 𝜌𝑒 ∈ {𝜌|𝜌1 =. . . = 𝜌𝑁−1 =
𝑑

𝑣𝑓
,
𝐶𝑑

𝑣𝑓
< 𝜌𝑁 < 𝜌

𝑗 −
𝑑

𝑤
} into equation (51) we have 𝑞𝑖

𝑒 = 𝑑, for 

𝑖 = 1,2, . . . , 𝑁 + 1. Therefore all 𝜌𝑒 ∈ {𝜌|𝜌1 =. . . = 𝜌𝑁−1 =
𝑑

𝑣𝑓
,
𝐶𝑑

𝑣𝑓
< 𝜌𝑁 < 𝜌

𝑗 −
𝑑

𝑤
} are 

equilibrium states of system (51). 

If 𝜌𝑁
𝑒 = 𝜌𝑗 −

𝑑

𝑤
, we find all the equilibrium states of the system (51) by considering the 

following two cases: 

Case I: for all 𝑖 = 1,2, . . , 𝑁 − 1, 𝜌𝑖
𝑒 = 𝜌𝑗 −

𝑑

𝑤
; 

Case II: there exists 𝑖 ∈ {1,2, . . . , 𝑁 − 1}, 𝑑/𝑣𝑓 ≤ 𝜌𝑖
𝑒 < 𝜌𝑗 −

𝑑

𝑤
 and 𝜌𝑖+1

𝑒 = 𝜌𝑗 −
𝑑

𝑤
. 

Case I contains only one point, that is, 𝜌𝑒 = (𝜌𝑗 −
𝑑

𝑤
) × 𝟏. Substituting this density state into 

equation (51), we have 𝑞𝑖
𝑒 = 𝑑, for 𝑖 = 1,2, . . . , 𝑁 + 1. Therefore (𝜌𝑗 −

𝑑

𝑤
) × 𝟏 is an equilibrium 

state of system (51). 

For case II, it is clear from Lemma 4.2 that 𝜌1
𝑒 =. . . 𝜌𝑖−1

𝑒 = 𝑑/𝑣𝑓 , 𝜌𝑖+1
𝑒 =. . . = 𝜌𝑁

𝑒 = 𝜌𝑗 −
𝑑

𝑤
. 

Taking 𝑖 = 1,2, . . . , 𝑁 − 1, we have that all potential equilibrium points of system (51) in case II 

are in the set ⋃ {𝑁−1
𝑖=1 𝜌|

𝑑

𝑣𝑓
≤ 𝜌𝑖 < 𝜌

𝑗 −
𝑑

𝑤
, 𝜌𝑘 =

𝑑

𝑣𝑓
, 1 ≤ 𝑘 < 𝑖, 𝜌𝑟 = 𝜌

𝑗 −
𝑑

𝑤
, 𝑖 < 𝑟 ≤ 𝑁}. 

Substituting any point in this set into equation (51), we have 𝑞𝑖
𝑒 = 𝑑, for 𝑖 = 1,2, . . . , 𝑁 + 1. 

Therefore all 𝜌𝑒 ∈ ⋃ {𝑁−1
𝑖=1 𝜌|

𝑑

𝑣𝑓
≤ 𝜌𝑖 < 𝜌

𝑗 −
𝑑

𝑤
, 𝜌𝑘 =

𝑑

𝑣𝑓
, 1 ≤ 𝑘 < 𝑖, 𝜌𝑟 = 𝜌

𝑗 −
𝑑

𝑤
, 𝑖 < 𝑟 ≤ 𝑁} are 

equilibrium states of system (51). 

To summarize, when 𝐼 ∈ 𝛺2, system (51) has an isolated equilibrium state 
𝑑

𝑣𝑓
× 𝟏 and an 

equilibrium manifold 

𝑆𝑒 = {(𝜌𝑗 −
𝑑

𝑤
) × 𝟏} ∪ {𝜌|𝜌𝑖 =

𝑑

𝑣𝑓
, 𝑖 = 1,2, . . . , 𝑁 − 1,

𝐶𝑑
𝑣𝑓
< 𝜌𝑁 < 𝜌

𝑗 −
𝑑

𝑤
}

∪ [⋃{

𝑁−1

𝑖=1

𝜌|
𝑑

𝑣𝑓
≤ 𝜌𝑖 < 𝜌

𝑗 −
𝑑

𝑤
, 𝜌𝑘 =

𝑑

𝑣𝑓
, 1 ≤ 𝑘 < 𝑖, 𝜌𝑟 = 𝜌

𝑗 −
𝑑

𝑤
, 𝑖 < 𝑟 ≤ 𝑁}] .

 

We now prove the rest of part b) as follows: first we show that for all 𝜌(0) in the feasible space 

𝑆, 𝜌(𝑡) converges to one equilibrium state in 𝑆‾𝑒, where 𝑆‾𝑒 = 𝑆𝑒 ∪ {
𝑑

𝑣𝑓
× 𝟏}. Then we show that 

𝑑

𝑣𝑓
× 𝟏 is locally exponentially stable, and that every 𝜌𝑒 ∈ 𝑆𝑒 is stable in the sense of Lyapunov, 
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i.e., ∀𝜇 > 0, ∃𝜂 > 0, such that ∀𝜌(0) that satisfy ∥ 𝜌(0) − 𝜌𝑒 ∥< 𝜂, we have ∥ 𝜌(𝑡) − 𝜌𝑒 ∥≤
𝜇, ∀𝑡 > 0. Furthermore, 𝜌(𝑡) converges to some 𝜌‾𝑒 ∈ 𝑆𝑒 that satisfies ∥ 𝜌‾𝑒 − 𝜌𝑒 ∥< 𝜇. 

For all 𝜌(0) ∈ 𝑆𝐼, by letting 𝛿 = 0 in the proof of Lemma 4.1, we can show 𝜌(𝑡) ∈ 𝑆𝐼 , ∀𝑡 ≥ 0. 
From equation (51), we know that ∀𝜌 ∈ 𝑆𝐼, 𝑞1 = 𝑑 and 𝑞𝑖 ≥ 𝑑, 𝑖 = 2,3, . . . , 𝑁. Therefore, 

∑�̇�𝑖

𝑘

𝑖=1

= 𝑞1 − 𝑞𝑘 ≤ 0, 𝑘 = 1,2, . . . , 𝑁. 

Thus ∑ 𝜌𝑖
𝑘
𝑖=1  is monotonically decreasing but bounded from below which implies that it 

converges to a limit. Therefore, we have 𝜌 = [𝜌1, 𝜌2, . . . , 𝜌𝑁]
𝑇 converges to a constant vector 

𝜌𝑒. From equation (51) we know that �̇� is a piecewise uniformly continuous function of 𝜌, 
therefore, as 𝜌 converges to a constant 𝜌𝑒, �̇� also converges to a constant, which has to be 0 
(otherwise ∥ 𝜌 ∥ goes to infinity). Therefore 𝜌𝑒 is a equilibrium point of system (51) by 
definition. Thus 𝜌𝑒 ∈ 𝑆‾𝑒. From part a) of Lemma 4.1, for all 𝜌(0) ∈ 𝑆, 𝑑(𝜌(𝑡), 𝑆𝐼) converges to 
0 exponentially fast. Therefore ∀𝜌(0) ∈ 𝑆, 𝜌(𝑡) converges to a equilibrium point 𝜌𝑒 ∈ 𝑆‾𝑒. 

Next we show that the equilibrium state 𝜌𝑒 =
𝑑

𝑣𝑓
× 𝟏 is exponentially stable, and that every 

𝜌𝑒 ∈ 𝑆𝑒 is stable in the sense of Lyapunov. 

(1) When 𝜌𝑒 =
𝑑

𝑣𝑓
× 𝟏, then for all 𝜌(0) ∈ {𝜌|0 ≤ 𝜌𝑖 ≤ 𝐶𝑑/𝑣𝑓 , 𝑖 = 1,2, . . . , 𝑁}, 𝑞𝑖 ≤ 𝐶𝑑 and 

𝑞𝑖+1 = 𝑣𝑓𝜌𝑖, for 𝑖 = 1,2, . . . , 𝑁. Thus 𝜌�̇� = 𝑞𝑖 − 𝑞𝑖+1 ≤ 𝐶𝑑 − 𝑣𝑓𝜌𝑖, which implies that 𝜌𝑖(𝑡) ≤

𝐶𝑑/𝑣𝑓, ∀𝑡 ≥ 0. Therefore, 

𝜌1̇ = 𝑑 − 𝑣𝑓𝜌1, 

𝜌�̇� = 𝑣𝑓𝜌𝑖−1 − 𝑣𝑓𝜌𝑖 , 𝑖 = 2,3, . . . , 𝑁, 

which can be written in the compact form as 

�̇� = 𝐴 (𝜌 −
𝑑

𝑣𝑓
× 𝟏) 

where 

𝐴 =

[
 
 
 
 
−𝑣𝑓
𝑣𝑓 −𝑣𝑓

⋱ ⋱
𝑣𝑓 −𝑣𝑓]

 
 
 
 

. 

Since 𝑣𝑓 > 0, we have that 𝐴 is Hurwitz. Therefore 𝜌(𝑡) converges to 
𝑑

𝑣𝑓
× 𝟏 exponentially fast. 

𝜌𝑒 is in the interior of the set {𝜌|0 ≤ 𝜌𝑖 ≤ 𝐶𝑑/𝑣𝑓 , 𝑖 = 1,2, . . . , 𝑁}, thus we can always find a 𝜂 >

0, such that {𝜌|∥ 𝜌 − 𝜌𝑒 ∥< 𝜂} ⊂ {𝜌|0 ≤ 𝜌𝑖 ≤ 𝐶𝑑/𝑣𝑓 , 𝑖 = 1,2, . . . , 𝑁}. Therefore, ∀𝜌(0) ∈
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{𝜌|∥ 𝜌 − 𝜌𝑒 ∥< 𝜂}, 𝜌(𝑡) converges to 𝜌𝑒 exponentially fast, which implies that 𝜌𝑒 =
𝑑

𝑣𝑓
× 𝟏 is 

exponentially stable. 

(2) When 𝜌𝑒 = (𝜌𝑗 −
𝑑

𝑤
) × 𝟏, then with 𝜂 > 0 sufficiently small, equation (51) gives the flow 

rates as follows: 𝑞1 = min{𝑑,𝑤(𝜌
𝑗 − 𝜌1)}, 𝑞𝑖 = 𝑤(𝜌

𝑗 − 𝜌𝑖), for 𝑖 = 2, . . . , 𝑁, and 𝑞𝑁+1 =
(1 − 𝜖0)𝐶𝑑 = 𝑑. Therefore, 

�̇�1 = min{𝑑,𝑤(𝜌𝑗 − 𝜌1)} − 𝑤(𝜌
𝑗 − 𝜌2),

�̇�𝑖 = 𝑤(𝜌𝑗 − 𝜌𝑖) − 𝑤(𝜌
𝑗 − 𝜌𝑖+1), 𝑖 = 2, . . . , 𝑁 − 1,

�̇�𝑁 = 𝑤(𝜌𝑗 − 𝜌𝑁) − 𝑑.

 

Let 𝑒𝑖 = 𝜌𝑖 − 𝜌𝑖
𝑒  and 𝑒‾ = [𝑒2, 𝑒3, . . . , 𝑒𝑁]

𝑇, then we have 𝑒 = [𝑒1, 𝑒‾
𝑇]𝑇, where 

and 

𝑒‾̇ = [

−𝑤 𝑤
−𝑤 𝑤

⋱ ⋱
−𝑤

] 𝑒‾. 

Since 𝑤 > 0, it follows that 𝑒‾ converges to 0 exponentially fast, i.e., there exists constants 
𝛼, 𝛽 > 0, such that 

From (176), we have that �̇�1 ≤ −𝑤𝑒1 + 𝑤𝑒2, which together with the continuity of �̇�1 implies 
that 

where 0 < 𝛽0 < min{𝑤, 𝛽}. Therefore, 𝑒1 is bounded from above by a function that decays 
exponentially fast to 0 with time. If ∀𝑡 ≥ 0, 𝑒1(𝑡) > 0, then 𝑒1(𝑡) converges exponentially fast 
to 0. Otherwise, if ∃𝑡0 ≥ 0, such that 𝑒1(𝑡0) ≤ 0, then we have the following cases: 

Case I: If 𝑒1(0) ≤ 0, then as long as 𝑒1(𝑡) ≤ 0, we have 

𝑒1(𝑡) = 𝑒1(0) + ∫ 𝑤
𝑡

0

𝑒2(𝜏)𝑑𝜏 ≥ −|𝑒1(0)| − ∫ 𝑤
𝑡

0

|𝑒2(𝜏)|𝑑𝜏 ≥ −|𝑒1(0)| −
𝛼𝑤

𝛽
|𝑒2(0)|exp(−𝛽𝑡), 

which implies that for any given 𝜖 > 0, there exists a finite time 𝑇 such that 

−|𝑒1(0)| − 𝜖 ≤ 𝑒1(𝑡) ≤ 𝜖, ∀𝑡 ≥ 𝑇, 

 
�̇�1 = {

𝑤𝑒2, 𝑒1 ≤ 0

−𝑤𝑒1 + 𝑤𝑒2, 𝑒1 > 0
 

(176) 

 |𝑒𝑖(𝑡)| ≤ |𝑒𝑖(0)|𝛼exp(−𝛽𝑡), 𝑖 = 2,3, . . . , 𝑁. (177) 

 𝑒1(𝑡) ≤ |𝑒1(0)|exp(−𝑤𝑡) + |𝑒2(0)|
𝛼𝑤

𝑤 − 𝛽0
[exp(−𝛽0𝑡) − exp(−𝑤𝑡)], 

(178) 
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which implies that the equilibrium 𝑒1 = 0 is stable in the sense of Lyapunov. 

Case II: If 𝑒1(0) > 0, note that 𝑒1(𝑡0) ≤ 0, then due to the uniform continuity of 𝑒1, we have 
that ∃𝑡1 ∈ (0, 𝑡0], such that 𝑒1(𝑡1) = 0. Then ∀𝑡 ≥ 𝑡1, as long as 𝑒1(𝑡) ≤ 0, we have 

𝑒1(𝑡) = ∫ 𝑤
𝑡

𝑡1

𝑒2(𝜏)𝑑𝜏 ≥ −∫ 𝑤
𝑡

𝑡1

|𝑒2(𝜏)|𝑑𝜏 ≥ −
𝛼𝑤

𝛽
|𝑒2(0)|exp(−𝛽𝑡1)[1 − exp(−𝛽(𝑡 − 𝑡1))]

≥ −
𝛼𝑤

𝛽
|𝑒2(0)|exp(−𝛽𝑡1),

 

which implies that for any given 𝜖 > 0, there exists a finite time 𝑇 ≥ 𝑡1 such that 

−
𝛼𝑤

𝛽
|𝑒2(0)|exp(−𝛽𝑡1) ≤ 𝑒1(𝑡) ≤ 𝜖, ∀𝑡 ≥ 𝑇, 

which implies that the equilibrium 𝑒1 = 0 is stable in the sense of Lyapunov. 

To summarize the above analysis, we have that the equilibrium state 𝜌𝑒 = (𝜌𝑗 −
𝑑

𝑤
) × 𝟏 is 

stable in the sense of Lyapunov. 

(3) When 𝜌𝑒 ∈ {𝜌|
𝑑

𝑣𝑓
≤ 𝜌𝑖 < 𝜌

𝑗 −
𝑑

𝑤
, 𝜌𝑘 =

𝑑

𝑣𝑓
, 1 ≤ 𝑘 < 𝑖, 𝜌𝑟 = 𝜌

𝑗 −
𝑑

𝑤
, 𝑖 < 𝑟 ≤ 𝑁}, 𝑖 =

1,2, . . . , 𝑁 − 1, ∀𝜌(0) that satisfy ∥ 𝜌(0) − 𝜌𝑒 ∥< 𝜂, if 𝜂 is sufficiently small, we can get the 
flow rates from equation (51) as follows: 𝑞1 = 𝑑, 𝑞𝑘 = 𝑣𝑓𝜌𝑘−1, 𝑘 = 2, . . . , 𝑖, 𝑞𝑟 =

𝑤(𝜌𝑗 − 𝜌𝑟), 𝑟 = 𝑖 + 1, . . . , 𝑁, and 𝑞𝑁+1 = (1 − 𝜖0)𝐶𝑑 = 𝑑. Therefore, we have 

�̇�1 = 𝑑 − 𝑣𝑓𝜌1,

�̇�𝑘 = 𝑣𝑓𝜌𝑘−1 − 𝑣𝑓𝜌𝑘, 𝑘 = 2, . . . , 𝑖 − 1,

�̇�𝑖 = 𝑣𝑓𝜌𝑖−1 − 𝑤(𝜌
𝑗 − 𝜌𝑖+1),

�̇�𝑟 = 𝑤(𝜌𝑗 − 𝜌𝑟) − 𝑤(𝜌
𝑗 − 𝜌𝑟+1), 𝑟 = 𝑖 + 1, . . . , 𝑁 − 1,

�̇�𝑁 = 𝑤(𝜌𝑗 − 𝜌𝑁) − 𝑑.

 

Let 𝑒𝑖 = 𝜌𝑖 − 𝜌𝑖
𝑒  and 𝑒 = [𝑒1, 𝑒2, . . . , 𝑒𝑁]

𝑇, the dynamics of 𝑒 can be presented in the compact 
form as follows: 

�̇� = 𝐴𝑒, 
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where 

𝐴 =

[
 
 
 
 
 
 
 
−𝑣𝑓 0

𝑣𝑓 −𝑣𝑓 0

⋱ ⋱ ⋱
𝑣𝑓 0 𝑤

0 −𝑤 𝑤
⋱ ⋱ ⋱

0 −𝑤]
 
 
 
 
 
 
 

, 

Let 𝑒‾ = [𝑒1, 𝑒2, . . . , 𝑒𝑖−1]
𝑇 and 𝑒

̱
= [𝑒𝑖+1, . . . , 𝑒𝑁]

𝑇, then 

𝑒‾̇ =

[
 
 
 
 

−𝑣𝑓
𝑣𝑓 −𝑣𝑓

⋱ ⋱
𝑣𝑓 −𝑣𝑓]

 
 
 
 

𝑒‾ 

and 

𝑒
̱
̇ = [

−𝑤 𝑤
⋱ ⋱

−𝑤 𝑤
−𝑤

] 𝑒
̱
. 

The above two subsystems are both linear and exponentially stable. Thus 𝑒‾ and 𝑒
̱
 both 

converge to 0 exponentially fast. �̇�𝑖 = 𝑣𝑓𝑒𝑖−1 + 𝑤𝑒𝑖+1, therefore 

𝑒𝑖(𝑡) = 𝑒𝑖(0) + 𝑣𝑓∫ 𝑒𝑖−1

𝑡

0

(𝜏)𝑑𝜏 + 𝑤∫ 𝑒𝑖+1

𝑡

0

(𝜏)𝑑𝜏. 

Since 

∥ 𝑒𝑖−1 ∥ ≤∥ 𝑒‾ ∥≤∥ 𝑒‾(0) ∥ 𝛼1exp(−𝛽1𝑡),

∥ 𝑒𝑖+1 ∥ ≤∥ 𝑒
̱
∥≤∥ 𝑒

̱
(0) ∥ 𝛼2exp(−𝛽2𝑡),

 

where 𝛼1, 𝛼2, 𝛽1, 𝛽2 > 0, thus 

𝑒𝑖 = 𝑒𝑖(0) + ∫ (𝑣𝑓𝑒𝑖−1 + 𝑤𝑒𝑖+1)
𝑡

0

𝑑𝜏,

∥ 𝑒𝑖 ∥ ≤∥ 𝑒𝑖(0) ∥ +∫ (𝑣𝑓 ∥ 𝑒𝑖−1 ∥ +𝑤 ∥ 𝑒𝑖+1 ∥)
𝑡

0

𝑑𝜏

≤∥ 𝑒𝑖(0) ∥ +𝑣𝑓∫ ∥
𝑡

0

𝑒‾(0) ∥ 𝛼1exp(−𝛽1𝑡)𝑑𝜏 + 𝑤∫ ∥
𝑡

0

𝑒
̱
(0) ∥ 𝛼2exp(−𝛽2𝑡)𝑑𝜏

=∥ 𝑒𝑖(0) ∥ +∥ 𝑒‾(0) ∥
𝑣𝑓𝛼1

𝛽1
(1 − exp(−𝛽1𝑡))+∥ 𝑒

̱
(0) ∥

𝑤𝛼2
𝛽2

(1 − exp(−𝛽2𝑡)).
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Since we have shown before that ∀𝜌(0) ∈ 𝑆, 𝜌(𝑡) converges to a constant, i.e., the limit 
lim𝑡→∞𝜌(𝑡) exists, which implies that the limit lim𝑡→∞ ∥ 𝑒𝑖 ∥ also exists. Therefore, 

lim
𝑡→∞

∥ 𝑒𝑖 ∥≤∥ 𝑒𝑖(0) ∥ +∥ 𝑒‾(0) ∥
𝑣𝑓𝛼1

𝛽1
+∥ 𝑒

̱
(0) ∥

𝑤𝛼2
𝛽2
. 

For all 𝜇 > 0, by selecting 𝜌(0) sufficiently close to 𝜌𝑒, we have ∥ 𝜌(𝑡) − 𝜌𝑒 ∥≤ 𝜇, ∀𝑡 ≥ 0, i.e., 

all equilibrium points 𝜌𝑒 ∈ {𝜌|
𝑑

𝑣𝑓
≤ 𝜌𝑖 < 𝜌

𝑗 −
𝑑

𝑤
, 𝜌𝑘 =

𝑑

𝑣𝑓
, 1 ≤ 𝑘 < 𝑖, 𝜌𝑟 = 𝜌

𝑗 −
𝑑

𝑤
, 𝑖 < 𝑟 ≤ 𝑁}, 

𝑖 = 1,2, . . . , 𝑁 − 1 are stable in the sense of Lyapunov. 

(4) When 𝜌𝑒 ∈ {𝜌|𝜌𝑖 = 𝑑/𝑣𝑓 , 𝑖 = 1,2, . . . , 𝑁 − 1,
𝐶𝑑

𝑣𝑓
< 𝜌𝑁 < 𝜌

𝑗 −
𝑑

𝑤
} , ∀𝜌(0) that satisfy ∥

𝜌(0) − 𝜌𝑒 ∥< 𝜂, if 𝜂 is sufficiently small, we get the flow rates from equation (51) as: 𝑞1 = 𝑑, 
𝑞𝑖 = 𝑣𝑓𝜌𝑖−1, 𝑖 = 2,3, . . . , 𝑁, and 𝑞𝑁+1 = (1 − 𝜖0)𝐶𝑑 = 𝑑. Therefore we have that 

�̇�1 = 𝑑 − 𝑣𝑓𝜌1,

�̇�𝑖 = 𝑣𝑓𝜌𝑖−1 − 𝑣𝑓𝜌𝑖 , 𝑖 = 2, . . . , 𝑁 − 1,

�̇�𝑁 = 𝑣𝑓𝜌𝑁−1 − 𝑑.
 

Let 𝑒𝑖 = 𝜌𝑖 − 𝜌𝑖
𝑒  and 𝑒 = [𝑒1, 𝑒2, . . . , 𝑒𝑁]

𝑇, the dynamics of 𝑒 can be expressed in the compact 
form as follows: 

�̇� = 𝐴𝑒, 

where 

𝐴 =

[
 
 
 
 
 
−𝑣𝑓
𝑣𝑓 −𝑣𝑓

⋱ ⋱
𝑣𝑓 −𝑣𝑓

𝑣𝑓 0 ]
 
 
 
 
 

. 

The stability of 𝜌𝑒 can be shown by following a similar analysis as in previous case. 

Therefore, all 𝜌𝑒 ∈ 𝑆𝑒 are stable in the sense of Lyapunov. Recall that ∀𝜌(0) ∈ 𝑆, 𝜌(𝑡) 
converges to an equilibrium state in 𝑆𝑒, thus ∀𝜇 > 0, ∃𝜂 > 0, such that ∀𝜌(0) that satisfy ∥
𝜌(0) − 𝜌𝑒 ∥< 𝜂, 𝜌(𝑡) converges to some 𝜌‾𝑒 ∈ 𝑆𝑒 that satisfies ∥ 𝜌‾𝑒 − 𝜌𝑒 ∥< 𝜇. 

c) For the case 𝐼 ∈ 𝛺3, from part a) of Lemma 4.1, we know 
𝑑

𝑣𝑓
≤ 𝜌𝑖

𝑒 ≤ 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, 𝑖 =

1,2, . . . , 𝑁. If 
𝑑

𝑣𝑓
≤ 𝜌1

𝑒 ≤ 𝜌𝑗 −
𝑑

𝑤
, then 𝑤(𝜌𝑗 − 𝜌1

𝑒) ≥ 𝑑, thus 𝑞1
𝑒 = min{𝑑, 𝐶, 𝑤(𝜌𝑗 − 𝜌1

𝑒)} = 𝑑 

and 𝑞𝑖
𝑒 = 𝑞1

𝑒 = 𝑑, 𝑖 = 2,3, . . . , 𝑁 + 1, according to the equilibrium condition. Solving the 
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equation 𝑞𝑁+1
𝑒 = 𝑑 gives only one solution 𝜌𝑁

𝑒 = 𝑑/𝑣𝑓. For 𝑖 = 1,2, . . . , 𝑁 − 1, given 𝜌𝑖+1
𝑒 =

𝑑/𝑣𝑓 , 𝑞𝑖
𝑒 = 𝑞𝑖+1

𝑒 = 𝑑, we have 𝑑 = 𝑞𝑖
𝑒 ≤ 𝑤(𝜌𝑗 − 𝜌𝑖

𝑒), thus 𝜌𝑖
𝑒 ≤ 𝜌𝑗 − 𝑑/𝑤. Since 

𝑞𝑖+1
𝑒 = min{𝑣𝑓𝜌𝑖

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖
𝑒), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖+1

𝑒 )} 

and 

𝑤(𝜌𝑗 − 𝜌𝑖+1
𝑒 ) > 𝐶 > 𝑑, as 𝜌𝑖+1

𝑒 = 𝑑/𝑣𝑓 < 𝜌𝑐 , 

�̃�(�̃�𝑗 − 𝜌𝑖
𝑒) ≥ �̃�[�̃�𝑗 − (𝜌𝑗 − 𝑑/𝑤)] > 𝑤[𝜌𝑗 − (𝜌𝑗 − 𝑑/𝑤)] = 𝑑. 

The equation 𝑞𝑖+1
𝑒 = 𝑑 gives only one solution, that is 𝑣𝑓𝜌𝑖

𝑒 = 𝑑, 

𝜌𝑖
𝑒 = 𝑑/𝑣𝑓 . 

By mathematical induction, we have that 𝜌𝑖
𝑒 = 𝑑/𝑣𝑓 , 𝑖 = 1,2, . . . , 𝑁. Therefore in the region 

𝑑

𝑣𝑓
≤ 𝜌1

𝑒 ≤ 𝜌𝑗 −
𝑑

𝑤
, system (51) has only one equilibrium state 

𝑑

𝑣𝑓
× 𝟏. 

If 𝜌𝑗 −
𝑑

𝑤
< 𝜌1

𝑒 ≤ 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, we have 𝑤(𝜌𝑗 − 𝜌1

𝑒) < 𝑑 < 𝐶, thus 

𝑞1
𝑒 = min{𝑑, 𝐶, 𝑤(𝜌𝑗 − 𝜌1

𝑒)} = 𝑤(𝜌𝑗 − 𝜌1
𝑒) < 𝑑. 

For 𝑖 = 2,3, . . . , 𝑁, given 𝜌𝑗 −
𝑑

𝑤
< 𝜌𝑖−1

𝑒 ≤ 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
 and 𝑞𝑖−1

𝑒 = 𝑞𝑖
𝑒 = 𝑞1

𝑒 = 𝑤(𝜌𝑗 − 𝜌1
𝑒), 

then we have 

𝑞𝑖
𝑒 = min{𝑣𝑓𝜌𝑖−1

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖−1
𝑒 ), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖

𝑒)} = 𝑤(𝜌𝑗 − 𝜌1
𝑒). 

Since 𝑣𝑓𝜌𝑖−1
𝑒 > 𝐶 > 𝑑 as 𝜌𝑖−1

𝑒 > 𝜌𝑐, 𝑣𝑓𝜌𝑖−1
𝑒 ≠ 𝑤(𝜌𝑗 − 𝜌1

𝑒). If �̃�(�̃�𝑗 − 𝜌𝑖−1
𝑒 ) = 𝑤(𝜌𝑗 − 𝜌1

𝑒), 

then 

𝑞𝑖−1
𝑒 ≤ 𝑤(𝜌𝑗 − 𝜌𝑖−1

𝑒 ) < �̃�(�̃�𝑗 − 𝜌𝑖−1
𝑒 ) = 𝑤(𝜌𝑗 − 𝜌1

𝑒), 

which contradicts the fact that 𝑞𝑖−1
𝑒 = 𝑤(𝜌𝑗 − 𝜌1

𝑒), therefore �̃�(�̃�𝑗 − 𝜌𝑖−1
𝑒 ) ≠ 𝑤(𝜌𝑗 − 𝜌1

𝑒). 

Thus we have 

𝑞𝑖
𝑒 = 𝑤(𝜌𝑗 − 𝜌𝑖

𝑒) = 𝑤(𝜌𝑗 − 𝜌1
𝑒) and 𝜌𝑖

𝑒 = 𝜌1
𝑒 ,  𝑖 = 2,3, . . . , 𝑁. 

Therefore 𝜌𝑗 −
𝑑

𝑤
< 𝜌𝑁

𝑒 ≤ 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, equation (51) gives that 𝑞𝑁+1

𝑒 = (1 − 𝜖0)𝐶𝑑. Using the 

equilibrium condition (53) we have 𝑞𝑖
𝑒 = 𝑤(𝜌𝑗 − 𝜌𝑖

𝑒) = (1 − 𝜖0)𝐶𝑑 for 𝑖 = 1,2, . . . , 𝑁, which 

gives only one solution, that is, (𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
) × 𝟏 is the only equilibrium state of system (51) 

in the region 𝜌𝑗 −
𝑑

𝑤
< 𝜌1

𝑒 ≤ 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
. To summarize, 𝜌𝑒1 =

𝑑

𝑣𝑓
× 𝟏 and 𝜌𝑒2 =

(𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
) × 𝟏 are 2 isolated equilibrium states of system (51) when 𝐼 ∈ 𝛺3. 
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Now we are going to show that for all 0 ≤ 𝜌(0) ≤ 𝜌𝑗 , 𝜌(𝑡) converges to either 𝜌𝑒1 or 𝜌𝑒2. 
According to part a) of Lemma 4.1, we have that ∀𝛿 > 0, ∃𝑇 > 0, such that 𝑑/𝑣𝑓 − 𝛿 < 𝜌𝑖 <

𝜌𝑗 − (1 − 𝜖0)𝐶𝑑 + 𝛿, 𝑖 = 1,2, . . . , 𝑁. Without loss of generality, let 𝑇 = 0. 

If ∀𝑡 ≥ 0, 𝜌𝑁(𝑡) ≤
𝐶𝑑

𝑣𝑓
, then 𝑤(𝜌𝑗 − 𝜌𝑁) > 𝐶, due to 

𝐶𝑑

𝑣𝑓
< 𝜌𝑐. We have 

𝑞𝑁 = min{𝑣𝑓𝜌𝑁−1, �̃�(�̃�
𝑗 − 𝜌𝑁−1)}, 

𝑞𝑁−1 = min{𝑣𝑓𝜌𝑁−2, �̃�(�̃�
𝑗 − 𝜌𝑁−2), 𝐶, 𝑤(𝜌

𝑗 − 𝜌𝑁−1)} ≤ 𝑤(𝜌
𝑗 − 𝜌𝑁−1). 

Therefore, ∀𝜌𝑁−1 > 𝜌𝑐, �̇�𝑁−1 = 𝑞𝑁−1 − 𝑞𝑁 ≤ 𝑤(𝜌
𝑗 − 𝜌𝑁−1) − �̃�(�̃�

𝑗 − 𝜌𝑁−1) < 0, thus 

limsup
𝑡→∞

𝜌𝑁−1 ≤ 𝜌𝑐. Consequently, we have that limsup
𝑡→∞

𝜌𝑖 ≤ 𝜌𝑐 , 𝑖 − 1,2, . . . , 𝑁 − 1. When 𝜌𝑖
𝑒 ≤

𝜌𝑐 , 𝑖 = 1,2, . . . , 𝑁 − 1, 𝜌𝑁 ≤ 𝐶𝑑/𝑣𝑓, equation (51) gives that 𝑞1 = 𝑑, 𝑞𝑖 = 𝑣𝑓𝜌𝑖−1, 𝑖 =

2,3, . . . , 𝑁 + 1, therefore, 

�̇�1 = 𝑑 − 𝑣𝑓𝜌1,

�̇�𝑖 = 𝑣𝑓𝜌𝑖−1 − 𝑣𝑓𝜌𝑖 , 𝑖 = 2,3, . . . , 𝑁.
 

which can be written in the compact form as 

�̇� = 𝐴 (𝜌 −
𝑑

𝑣𝑓
× 𝟏) 

where 

𝐴 =

[
 
 
 
 
−𝑣𝑓
𝑣𝑓 −𝑣𝑓

⋱ ⋱
𝑣𝑓 −𝑣𝑓]

 
 
 
 

. 

Since 𝑣𝑓 > 0, we have that 𝐴 is Hurwitz. Therefore 𝜌(𝑡) converges to 𝜌𝑒1 =
𝑑

𝑣𝑓
× 𝟏 

exponentially fast. 

If there exists 𝑡0 ≥ 0, 𝜌𝑁(𝑡0) >
𝐶𝑑

𝑣𝑓
, then 𝑞𝑁+1(𝑡0) = (1 − 𝜖0)𝐶𝑑, due to 

𝐶𝑑

𝑣𝑓
< 𝜌𝑁(𝑡0) < 𝜌

𝑗 −

(1 − 𝜖0)𝐶𝑑 + 𝛿. Recall that 

𝑞𝑁 = min{𝑣𝑓𝜌𝑁−1, �̃�(�̃�
𝑗 − 𝜌𝑁−1), 𝐶, 𝑤(𝜌

𝑗 − 𝜌𝑁)}. 
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and 𝑑/𝑣𝑓 − 𝛿 < 𝜌𝑁−1 < 𝜌
𝑗 − (1 − 𝜖0)𝐶𝑑 + 𝛿, we have that 

𝑣𝑓𝜌𝑁−1 > 𝑑 − 𝑣𝑓𝛿,

�̃�(�̃�𝑗 − 𝜌𝑁−1) > �̃� (�̃�𝑗 − (𝜌𝑗 − (1 − 𝜖0)𝐶𝑑 + 𝛿))

= (𝑤 − �̃�)(𝜌𝑗 − (1 − 𝜖0)𝐶𝑑 − 𝜌𝑐) + (1 − 𝜖0)𝐶𝑑 − �̃�𝛿.

 

Therefore 

where 

𝛼1 = min{
𝑑 − 𝑣𝑓𝛿 − (1 − 𝜖0)𝐶𝑑

𝜌𝑗 − (1 − 𝜖0)𝐶𝑑/𝑤
,
(𝑤 − �̃�)(𝜌𝑗 − (1 − 𝜖0)𝐶𝑑 − 𝜌𝑐) − �̃�𝛿

𝜌𝑗 − (1 − 𝜖0)𝐶𝑑/𝑤
, 𝑤} 

and 

𝛼2 = min{
𝑑 − 𝑣𝑓𝛿 − (1 − 𝜖0)𝐶𝑑

(1 − 𝜖0)𝐶𝑑/𝑤
,
(𝑤 − �̃�)(𝜌𝑗 − (1 − 𝜖0)𝐶𝑑 − 𝜌𝑐) − �̃�𝛿

(1 − 𝜖0)𝐶𝑑/𝑤
, 𝑤}. 

When 𝛿 is sufficiently small, 𝛼1 and 𝛼2 are both positive. Therefore 𝜌𝑁(𝑡) >
𝐶𝑑

𝑣𝑓
, ∀𝑡 ≥ 𝑡0 and 

𝜌𝑁(𝑡) converges to 𝜌𝑗 −
(1−𝜖0)

𝑤
 exponentially fast. Consequently, 𝜌𝑖(𝑡) also converges 

exponentially fast to 𝜌𝑗 −
(1−𝜖0)

𝑤
 for 𝑖 = 1,2, . . . , 𝑁 − 1, that is, 𝜌(𝑡) converges exponentially 

fast to 𝜌𝑒2. Therefore, for all initial condition 𝜌(0) ∈ 𝑆, 𝜌(𝑡) converges to one of the two 
equilibrium states exponentially fast. 

From the analysis above, we have that ∀𝜌(0) ∈ {𝜌|
𝑑

𝑣𝑓
− 𝛿 ≤ 𝜌𝑖 ≤ 𝜌

𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿, 𝑖 =

1,2, . . . , 𝑁 − 1,
𝐶𝑑

𝑣𝑓
< 𝜌𝑁 ≤ 𝜌

𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
+ 𝛿}, 𝜌(𝑡) converges to the equilibrium state 𝜌𝑒2 

exponentially fast. Therefore this equilibrium state is locally exponentially stable. 

Similar to the case 𝐼 ∈ 𝛺2, we can show that for all 𝜌(0) ∈ {𝜌|0 ≤ 𝜌𝑖 ≤ 𝐶𝑑/𝑣𝑓 , 𝑖 = 1,2, . . . , 𝑁}, 

𝜌(𝑡) converges to the point 𝜌𝑒1 exponentially fast. Therefore this equilibrium state is 
exponentially stable. 

d) When 𝐼 ∈ 𝛺4, 𝑑 > 𝐶𝑏. If 𝜌𝑒 is an equilibrium state of system (51) then we have 
min{𝑑,𝐶}

𝑣𝑓
≤

𝜌𝑖
𝑒 ≤ 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
, 𝑖 = 1,2, . . . , 𝑁 by using Lemma 4.1, in this region 

�̇�𝑁 = 𝑞𝑁 − 𝑞𝑁+1

{
  
 

  
 > −𝛼1 [𝜌𝑁 − (𝜌

𝑗 −
(1 − 𝜖0)𝐶𝑑

𝑤
)] > 0,  if 𝜌𝑁 < 𝜌

𝑗 −
(1 − 𝜖0)𝐶𝑑

𝑤

= 0,                                                                    if 𝜌𝑁 = 𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

,

< −𝛼2 [𝜌𝑁 − (𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

)] < 0,  if 𝜌𝑁 > 𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

 

(179) 
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𝑞𝑁+1
𝑒 = min{𝑣𝑓𝜌𝑁

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑁
𝑒 ), (1 − 𝜖(𝜌𝑁

𝑒 ))𝐶𝑑} = (1 − 𝜖0)𝐶𝑑, 

From the equilibrium condition, we have that 𝑞𝑖
𝑒 = (1 − 𝜖0)𝐶𝑑, 𝑖 = 1,2, . . . , 𝑁. Recall that 

𝑞1
𝑒 = min{𝑑, 𝐶, 𝑤(𝜌𝑗 − 𝜌1

𝑒)}. 

Since 𝑑 > (1 − 𝜖0)𝐶𝑑 and 𝐶 > (1 − 𝜖0)𝐶𝑑, 𝑞1
𝑒 = (1 − 𝜖0)𝐶𝑑 gives only one solution 𝜌1

𝑒 = 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
. For 𝑖 = 2,3, . . . , 𝑁, given 𝜌𝑖−1

𝑒 = 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, we check the value of 𝜌𝑖

𝑒. Recall that 

𝑞𝑖
𝑒 = min{𝑣𝑓𝜌𝑖−1

𝑒 , �̃�(�̃�𝑗 − 𝜌𝑖−1
𝑒 ), 𝐶, 𝑤(𝜌𝑗 − 𝜌𝑖

𝑒)}. 

Since 𝑣𝑓𝜌𝑖−1
𝑒 > 𝐶 > (1 − 𝜖0)𝐶𝑑 and �̃�(�̃�𝑗 − 𝜌𝑖−1

𝑒 ) > 𝑤(𝜌𝑗 − 𝜌𝑖−1
𝑒 ) = (1 − 𝜖0)𝐶𝑑 as 𝜌𝑖−1

𝑒 > 𝜌𝑐, 

thus 𝑞𝑖
𝑒 = (1 − 𝜖0)𝐶𝑑 gives 𝑤(𝜌𝑗 − 𝜌𝑖

𝑒) = (1 − 𝜖0)𝐶𝑑, i.e., 𝜌𝑖
𝑒 = 𝜌𝑗 −

(1−𝜖0)𝐶𝑑

𝑤
. Therefore the 

point (𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
) × 𝟏 is the unique equilibrium state of system (51) when 𝐼 ∈ 𝛺4. 

For all 𝜌(0) ∈ 𝑆𝛿
𝐼 , we have 𝑣𝑓𝜌𝑁 > 𝑑 − 𝑣𝑓𝛿 and �̃�(�̃�𝑗 − 𝜌𝑁) > �̃� (�̃�

𝑗 − 𝜌𝑗 +
(1−𝜖0)𝐶𝑑

𝑤
− 𝛿) by 

using Lemma 4.1. Take 𝛿 to be sufficiently small, we have 𝑣𝑓𝜌𝑁 > 𝐶𝑑 and �̃�(�̃�𝑗 − 𝜌𝑁) >
(1 − 𝜖0)𝐶𝑑. Thus 

𝑞𝑁+1 = min{𝑣𝑓𝜌𝑁 , �̃�(�̃�
𝑗 − 𝜌𝑁), (1 − 𝜖(𝜌𝑁))𝐶𝑑} = (1 − 𝜖0)𝐶𝑑, 

Then 

Similar to equation (179), we have 

�̇�𝑁

{
  
 

  
 > −𝛼1 [𝜌𝑁 − (𝜌

𝑗 −
(1 − 𝜖0)𝐶𝑑

𝑤
)] > 0, if 𝜌𝑁 < 𝜌

𝑗 −
(1 − 𝜖0)𝐶𝑑

𝑤

= 0, if 𝜌𝑁 = 𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

< −𝛼2 [𝜌𝑁 − (𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

)] < 0, if 𝜌𝑁 > 𝜌
𝑗 −

(1 − 𝜖0)𝐶𝑑
𝑤

, 

where 

𝛼1 = min{
𝑑 − 𝑣𝑓𝛿 − (1 − 𝜖0)𝐶𝑑

𝜌𝑗 − (1 − 𝜖0)𝐶𝑑/𝑤
,
(𝑤 − �̃�)(𝜌𝑗 − (1 − 𝜖0)𝐶𝑑 − 𝜌𝑐) − �̃�𝛿

𝜌𝑗 − (1 − 𝜖0)𝐶𝑑/𝑤
, 𝑤} 

and 

𝛼2 = min{
𝑑 − 𝑣𝑓𝛿 − (1 − 𝜖0)𝐶𝑑

(1 − 𝜖0)𝐶𝑑/𝑤
,
(𝑤 − �̃�)(𝜌𝑗 − (1 − 𝜖0)𝐶𝑑 − 𝜌𝑐) − �̃�𝛿

(1 − 𝜖0)𝐶𝑑/𝑤
, 𝑤}. 

 𝜌�̇� = 𝑞𝑁 − 𝑞𝑁+1 = min{𝑣𝑓𝜌𝑁−1, �̃�(�̃�
𝑗 − 𝜌𝑁−1), 𝐶, 𝑤(𝜌

𝑗 − 𝜌𝑁)} − (1 − 𝜖0)𝐶𝑑. (180) 
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When 𝛿 is sufficiently small, 𝛼1 and 𝛼2 are both positive. Therefore 𝜌𝑁 converges to 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
 exponentially fast. 

Based on the converges of 𝜌𝑁, we can show that 𝜌𝑁−1 also convergences to 𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
, 

followed by 𝜌𝑁−2 through 𝜌1. Therefore, ∀𝜌(0) ∈ 𝑆, 𝜌(𝑡) converges to (𝜌𝑗 −
(1−𝜖0)𝐶𝑑

𝑤
) × 𝟏 

exponentially fast. 

e) For the case 𝐼 ∈ 𝛺5 The proof of this part can be demonstrated by following the same 
routine of the case of 𝐼 ∈ 𝛺1 based on part b) of Lemma 4.1. For the sake of briefness, we omit 
the detailed proof here.   
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Appendix E: Proof of Theorem 1.5 

a) If 𝐼 ∈ ⋃ 𝛺𝑖
4
𝑖=1 , the VSL controller (49) is applied. First we show that the controller 𝑣 is well-

defined ∀𝜌 ∈ [0, 𝜌𝑗]. According to (49), 𝑣‾1 is defined in the region 
𝐶𝑑

𝑣𝑓
− 𝛿2 ≤ 𝜌 ≤ 𝜌

𝑗 , in which 

𝑞2 ≤ 𝐶𝑑 and 𝑥 + 𝛿1 > 0. Therefore the denominator of 𝑣‾1 

𝑤𝜌𝑗 − 𝑞2 + 𝜆(𝑥 + 𝛿1) ≥ 𝑤𝜌𝑗 − 𝐶𝑑 > 𝑤(𝜌
𝑗 − 𝜌𝑐) − 𝐶𝑑 = 𝐶 − 𝐶𝑑 > 0. 

Hence 𝑣1 = med{0, 𝑣‾1, 𝑣𝑓} is well-defined in the region 
𝐶𝑑

𝑣𝑓
− 𝛿2 ≤ 𝜌 ≤ 𝜌

𝑗 . 𝑣‾2 is defined in the 

region 0 ≤ 𝜌 ≤
𝐶𝑑

𝑣𝑓
, in which 𝑞2 = 𝑣𝑓𝜌 = 𝐶𝑑 + 𝑣𝑓𝑥. Since 0 < 𝜆 <

𝑣𝑓𝑤𝜌
𝑗

𝐶𝑑
 and −

𝐶𝑑

𝑣𝑓
≤ 𝑥 ≤ 0, we 

have that 

𝑞2 − 𝜆𝑥 = 𝐶𝑑 + 𝑣𝑓𝑥 − 𝜆𝑥 > 𝐶𝑑 + 𝑣𝑓𝑥 ≥ 0 

and 

𝑤𝜌𝑗 − (𝑞2 − 𝜆𝑥) > 𝑤𝜌
𝑗 − 𝐶𝑑 − (𝑣𝑓 −

𝑣𝑓𝑤𝜌
𝑗

𝐶𝑑
) 𝑥 ≥ 𝑤𝜌𝑗 − 𝐶𝑑 − (𝑣𝑓 −

𝑣𝑓𝑤𝜌
𝑗

𝐶𝑑
)(−

𝐶𝑑
𝑣𝑓
) = 0 

due to 𝑣𝑓 −
𝑣𝑓𝑤𝜌

𝑗

𝐶𝑑
< 0. Therefore, the denominator of 𝑣‾2 is greater than 0, 𝑣2 = med{0, 𝑣‾2, 𝑣𝑓} 

is well-defined, and 𝑣‾2 =
𝑤(𝑞2−𝜆𝑥)

𝑤𝜌𝑗−(𝑞2−𝜆𝑥)
> 0. 

Now we find the equilibrium point of system (44)-(49) and analyze its stability properties. We 

have that ∀𝜌(0) ∈ (𝐶𝑑/𝑣𝑓 , 𝜌
𝑗], 𝑣 = 𝑣1. If 𝑣1 = 0, i.e., 𝑣‾1 ≤ 0, we have 𝑞1 =

𝑣1𝑤𝜌
𝑗

𝑣1+𝑤
= 0. In the 

region 
𝐶𝑑

𝑣𝑓
− 𝛿2 ≤ 𝜌 ≤ 𝜌

𝑗 , we have 

𝑣𝑓𝜌 ≥ 𝐶𝑑 − 𝑣𝑓𝛿2 > 0, as 𝛿2 <
𝐶𝑑
𝑣𝑓
,

�̃�(�̃�𝑗 − 𝜌) ≥ �̃�(�̃�𝑗 − 𝜌𝑗) > 0, as �̃�𝑗 > 𝜌𝑗 ≥ 𝜌,

(1 − 𝜖(𝜌))𝐶𝑑 ≥ (1 − 𝜖0)𝐶𝑑 > 0, as 𝜖0 < 1.

 

Therefore, 

𝑞2 = min{𝑣𝑓𝜌, �̃�(�̃�
𝑗 − 𝜌), (1 − 𝜖(𝜌))𝐶𝑑} ≥ min{𝐶𝑑 − 𝑣𝑓𝛿2, �̃�(�̃�

𝑗 − 𝜌𝑗), (1 − 𝜖0)𝐶𝑑}

≥
min{𝐶𝑑 − 𝑣𝑓𝛿2, �̃�(�̃�

𝑗 − 𝜌𝑗), (1 − 𝜖0)𝐶𝑑}

𝜌𝑗 − 𝐶𝑑/𝑣𝑓 + 𝛿1
(𝜌 −

𝐶𝑑
𝑣𝑓
+ 𝛿1)

 

due to 
𝐶𝑑

𝑣𝑓
− 𝛿2 ≤ 𝜌 ≤ 𝜌

𝑗, which implies 0 <
𝜌−𝐶𝑑/𝑣𝑓+𝛿1

𝜌𝑗−𝐶𝑑/𝑣𝑓+𝛿1
≤ 1, since 𝛿2 < 𝛿1. Thus we have 
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If 𝑣1 > 0, i.e., 𝑣‾1 > 0, 𝑣1 = min{𝑣‾1, 𝑣𝑓} ≤ 𝑣‾1 and 

𝑣1𝑤𝜌
𝑗

𝑣1 +𝑤
−
𝑣‾1𝑤𝜌

𝑗

𝑣‾1 + 𝑤
= 𝑤𝜌𝑗

(𝑣1 − 𝑣‾1)𝑤

(𝑣1 + 𝑤)(𝑣‾1 + 𝑤)
≤ 0, 

which implies 
𝑣1𝑤𝜌

𝑗

𝑣1+𝑤
≤
𝑣‾1𝑤𝜌

𝑗

𝑣‾1+𝑤
. Hence, 

and 

�̇� = 𝑞1 − 𝑞2 ≤ −𝜆 (𝜌 −
𝐶𝑑
𝑣𝑓
+ 𝛿1) < 0. 

According to equation (181)-(182) 

�̇� ≤ −𝛼 (𝜌 −
𝐶𝑑
𝑣𝑓
+ 𝛿1), 

where 𝛼 = min{𝜆,
min{𝐶𝑑−𝑣𝑓𝛿2,�̃�(�̃�

𝑗−𝜌𝑗),(1−𝜖0)𝐶𝑑}

𝜌𝑗−𝐶𝑑/𝑣𝑓+𝛿1
} > 0. Using Lemma 3.2.4 in (P. A. Ioannou and 

Sun 2012), we have 

𝜌(𝑡) ≤
𝐶𝑑
𝑣𝑓
− 𝛿1 + [𝜌(0) −

𝐶𝑑
𝑣𝑓
+ 𝛿1] 𝑒

−𝛼𝑡. 

Since 𝐶𝑑/𝑣𝑓 − 𝛿1 < 𝐶𝑑/𝑣𝑓 − 𝛿2 < 𝐶𝑑/𝑣𝑓 < 𝜌(0), 𝜌(𝑡) will decrease exponentially to the value 

𝜌(𝑡0) = 𝐶𝑑/𝑣𝑓 − 𝛿2 at some finite time 𝑡0, at which 𝑣 switches to 𝑣2, in which case the 

dynamics of 𝜌(𝑡) are analyzed below. 

Either the initial condition 0 ≤ 𝜌(0) ≤
𝐶𝑑

𝑣𝑓
 or 𝑣 switches to 𝑣2 from 𝑣1, there exists a 𝑡0 ≥ 0, at 

which 0 ≤ 𝜌(𝑡0) ≤
𝐶𝑑

𝑣𝑓
 and 𝑣 = 𝑣2. Since 𝑣‾2 > 0, we have 𝑣2 = min{𝑣‾2, 𝑣𝑓} ≤ 𝑣𝑓 and 

𝑣2𝑤𝜌
𝑗

𝑣2 + 𝑤
≤
𝑣𝑓𝑤𝜌

𝑗

𝑣𝑓 + 𝑤
= 𝐶 < 𝑤(𝜌𝑗 − 𝜌) as 𝜌 ≤ 𝐶𝑑/𝑣𝑓 < 𝜌𝑐. 

 
�̇� = 𝑞1 − 𝑞2 ≤ −

min{𝐶𝑑 − 𝑣𝑓𝛿2, �̃�(�̃�
𝑗 − 𝜌𝑗), (1 − 𝜖0)𝐶𝑑}

𝜌𝑗 − 𝐶𝑑/𝑣𝑓 + 𝛿1
(𝜌 −

𝐶𝑑
𝑣𝑓
+ 𝛿1) 

(181) 

 
𝑞1 = min{𝑑,

𝑣1𝑤𝜌
𝑗

𝑣1 + 𝑤
, 𝐶,𝑤(𝜌𝑗 − 𝜌)} ≤

𝑣1𝑤𝜌
𝑗

𝑣1 + 𝑤
≤
𝑣‾1𝑤𝜌

𝑗

𝑣‾1 + 𝑤
= 𝑞2 − 𝜆(𝑥 + 𝛿1) 

(182) 
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Therefore, 

𝑞1 = min{𝑑,
𝑣2𝑤𝜌

𝑗

𝑣2 + 𝑤
, 𝐶,𝑤(𝜌𝑗 − 𝜌)} = min{𝑑,

𝑣2𝑤𝜌
𝑗

𝑣2 + 𝑤
} = min{𝑑,

𝑣𝑓𝑤𝜌
𝑗

𝑣𝑓 + 𝑤
,
𝑣‾2𝑤𝜌

𝑗

𝑣‾2 + 𝑤
}

= min{𝑑,
𝑣‾2𝑤𝜌

𝑗

𝑣‾2 + 𝑤
} = min{𝑑, 𝑞2 − 𝜆𝑥}

 

and 𝑞2 = 𝐶𝑑 + 𝑣𝑓𝑥. Consequently, 

In the case 𝑑 > 𝐶𝑑, we have �̇� ≥ −min{𝑣𝑓 , 𝜆} (𝜌 −
𝐶𝑑

𝑣𝑓
), ∀𝜌 ∈ [0, 𝐶𝑑/𝑣𝑓] and �̇� = 0 at 𝜌 =

𝐶𝑑/𝑣𝑓, which implies that 𝜌(𝑡) converges exponentially fast to 𝜌 =
𝐶𝑑

𝑣𝑓
, and ∀𝑡 ≥ 𝑡0, 𝜌 ≤

𝐶𝑑

𝑣𝑓
, 

therefore the flow at the exit of the section 𝑞2 = 𝑣𝑓𝜌 converges to 𝐶𝑑. In the case 𝑑 ≤ 𝐶𝑑, 

Therefore, 𝜌(𝑡) converges to 
𝑑

𝑣𝑓
 exponentially fast, and 𝑞2 = 𝑣𝑓𝜌 converges to 𝑑 with the same 

rate. In summary, the closed-loop system (44)-(49) has a unique equilibrium point 𝜌𝑒 =
min{𝑑,𝐶𝑑}

𝑣𝑓
. In addition, ∀𝜌(0) ∈ [0,

𝐶𝑑

𝑣𝑓
], 𝜌(𝑡) converges to 𝜌𝑒 exponentially fast and ∀𝜌(0) ∈

(
𝐶𝑑

𝑣𝑓
, 𝜌𝑗], 𝜌(𝑡) decreases to 

𝐶𝑑

𝑣𝑓
− 𝛿2 exponentially fast and then converges to 𝜌𝑒 exponentially 

fast. The flow rate at the exit of the section converges to the maximum possible value 
min{𝑑, 𝐶𝑑} exponentially fast while the speed of flow converges with the same rate to 𝑣𝑓. 

b) Part b) of Theorem 1.5 can be derived directly from part e) of Theorem 1.3.   

 
�̇� = 𝑞1 − 𝑞2 = min{𝑑 − 𝑣𝑓𝜌,−𝜆 (𝜌 −

𝐶𝑑
𝑣𝑓
)}. 

(183) 

�̇� = min {𝑑 − 𝑣𝑓𝜌,−𝜆 (𝜌 −
𝐶𝑑
𝑣𝑓
)}

{
  
 

  
 ≥ −min{𝑣𝑓 , 𝜆} (𝜌 −

𝑑

𝑣𝑓
)          if 𝜌 ∈ [0,

𝑑

𝑣𝑓
)  

= 0                                                if 𝜌 =
𝑑

𝑣𝑓
          

≤ −𝑣𝑓 (𝜌 −
𝑑

𝑣𝑓
)                         if 𝜌 ∈ (

𝑑

𝑣𝑓
,
𝐶𝑑
𝑣𝑓
]

  

(184) 



 304 

Appendix F: Proof of Theorem 1.6 

a) In controller (56), 𝑣1 through 𝑣𝑁−1 is well-defined by letting 𝑣𝑖 = 𝑣𝑓 when 𝜌𝑖 = 0, for 𝑖 =

1,2, . . . , 𝑁 − 1. Since 0 < 𝜆0 ≤
𝑣𝑓𝑤𝜌

𝑗

𝐶𝑑
, we can show that 𝑣0 is also well-defined in a similar 

manner to the single section case in Theorem 1.5. 

For all 𝜌𝑁(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗], 𝑣‾𝑁−1 = 𝑣‾𝑁−1,1. If 𝑣𝑁−1 = 0, i.e., 𝑣‾𝑁−1,1 ≤ 0, we have 𝑞𝑁 = 0, thus in 

the region 
𝐶𝑑

𝑣𝑓
− 𝛿2 ≤ 𝜌𝑁(𝑡) ≤ 𝜌

𝑗 , we have 

�̇�𝑁 = −𝑞𝑁+1 = −min{𝑣𝑓𝜌𝑁, (1 − 𝜖(𝜌𝑁))𝐶𝑑, �̃�(�̃�
𝑗 − 𝜌𝑁)}

≤ −
min{𝐶𝑑 − 𝑣𝑓𝛿2, �̃�(�̃�

𝑗 − 𝜌𝑗), (1 − 𝜖0)𝐶𝑑}

𝜌𝑗 − 𝐶𝑑/𝑣𝑓 + 𝛿1
(𝜌𝑁 −

𝐶𝑑
𝑣𝑓
+ 𝛿1) .

 

If 𝑣𝑁−1 > 0, i.e., 𝑣‾𝑁−1 > 0, then 𝑞𝑁 ≤ 𝑣𝑁−1𝜌𝑁−1 ≤ 𝑣‾𝑁−1𝜌𝑁−1, 

�̇�𝑁 ≤ 𝑣‾𝑁−1𝜌𝑁−1 − 𝑞𝑁+1 = −𝜆𝑁−1 (𝜌𝑁 −
𝐶𝑑
𝑣𝑓
+ 𝛿1). 

Therefore, ∀𝜌𝑁(0) ∈ (
𝐶𝑑

𝑣𝑓
, 𝜌𝑗], we have 

�̇�𝑁 ≤ −𝛼 (𝜌𝑁 −
𝐶𝑑
𝑣𝑓
+ 𝛿1), 

where 𝛼 = min{𝜆𝑁−1,
min{𝐶𝑑−𝑣𝑓𝛿2,�̃�(�̃�

𝑗−𝜌𝑗),(1−𝜖0)𝐶𝑑}

𝜌𝑗−𝐶𝑑/𝑣𝑓+𝛿1
} > 0. Since 𝛼 > 0 and 

𝐶𝑑

𝑣𝑓
− 𝛿1 <

𝐶𝑑

𝑣𝑓
− 𝛿2 <

𝐶𝑑

𝑣𝑓
< 𝜌𝑁(0), and 

𝐶𝑑

𝑣𝑓
− 𝛿2 > 0, 𝜌𝑁(𝑡) will decrease exponentially fast to the value 

𝐶𝑑

𝑣𝑓
− 𝛿2 at 

some finite time 𝑡0, at which 𝑣‾𝑁−1 switches to 𝑣‾𝑁−1,2, in which case 𝜌(𝑡) evolves as analyzed 
below. 

Either the initial condition 𝜌𝑁(0) ∈ [0,
𝐶𝑑

𝑣𝑓
] or 𝑣‾𝑁−1 switches to 𝑣‾𝑁−1,2 from 𝑣‾𝑁−1,1 at 𝜌𝑁 =

𝐶𝑑

𝑣𝑓
−

𝛿2, there exists 𝑡0 ≥ 0, at which time instant 𝜌𝑁(𝑡0) ≤
𝐶𝑑

𝑣𝑓
 and 𝑣‾𝑁−1 = 𝑣‾𝑁−1,2. Since 𝜌𝑁 ≤

𝐶𝑑

𝑣𝑓
, 𝑞𝑁+1 ≥ 0, and 𝜌𝑁−1 ≥ 0, we have 𝑣‾𝑁−1,2 ≥ 0 from equation (56), thus 𝑣𝑁−1 =

min{𝑣𝑓 , 𝑣‾𝑁−1,2}. Therefore 

�̇�𝑁 ≤ 𝑣‾𝑁−1,2𝜌𝑁−1 − 𝑞2 = −𝜆𝑁−1 (𝜌𝑁 −
𝐶𝑑
𝑣𝑓
). 

Without loss of generality, let 𝑡0 = 0, then we have 

𝜌𝑁(𝑡) ≤
𝐶𝑑
𝑣𝑓
+ (𝜌𝑁(0) −

𝐶𝑑
𝑣𝑓
) 𝑒−𝜆𝑁−1𝑡, 
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which implies that ∀𝑡 ≥ 0, 𝜌𝑁(𝑡) ≤
𝐶𝑑

𝑣𝑓
, 𝑣‾𝑁−1 = 𝑣‾𝑁−1,2. Then we examine the dynamics of 𝜌𝑁−1. 

If 𝑣𝑁−2 = 0, i.e., 𝑣‾𝑁−2 ≤ 0, 𝑞𝑁−1 = 0, we have 

�̇�𝑁−1 = −𝑞𝑁 = −min{𝑣𝑁−1𝜌𝑁−1,
𝑣𝑁−1𝑤𝜌

𝑗

𝑣𝑁−1 + 𝑤
, 𝐶,𝑤(𝜌𝑗 − 𝜌𝑁)}. 

Since 𝜌𝑁 ≤
𝐶𝑑

𝑣𝑓
< 𝜌𝑐 ,  𝑤(𝜌

𝑗 − 𝜌𝑁) > 𝐶 and 𝑣𝑁−1 = min{𝑣𝑓 , 𝑣‾𝑁−1,2}, we have 

�̇�𝑁−1 = −min{𝑣‾𝑁−1,2𝜌𝑁−1, 𝑣𝑓𝜌𝑁−1,
𝑣‾𝑁−1,2𝑤𝜌

𝑗

𝑣‾𝑁−1,2 + 𝑤
,
𝑣𝑓𝑤𝜌

𝑗

𝑣𝑓 + 𝑤
, 𝐶}. 

Since 0 ≤ 𝜌𝑁 ≤
𝐶𝑑

𝑣𝑓
, 𝜆𝑁−1 > 𝑣𝑓 and 𝜌𝑁−1 ≤ 𝜌

𝑗 , we have 

𝑣‾𝑁−1,2𝜌𝑁−1 = 𝐶𝑑 + (𝑣𝑓 − 𝜆𝑁−1) (𝜌𝑁 −
𝐶𝑑
𝑣𝑓
) ≥ 𝐶𝑑 ≥

𝐶𝑑

𝜌𝑗 −
𝐶𝑑
𝑣𝑓

(𝜌𝑁−1 −
𝐶𝑑
𝑣𝑓
) ,

𝑣𝑓𝜌𝑁−1 ≥ 𝑣𝑓 (𝜌𝑁−1 −
𝐶𝑑
𝑣𝑓
) ,

𝑣‾𝑁−1,2𝑤𝜌
𝑗

𝑣‾𝑁−1,2 + 𝑤
= 𝑤𝜌𝑗

𝐶𝑑 + (𝑣𝑓 − 𝜆𝑁−1)𝑥𝑁

𝐶𝑑 + (𝑣𝑓 − 𝜆𝑁−1)𝑥𝑁 + 𝑤𝜌𝑁−1
≥

𝑤𝜌𝑗𝑣𝑓𝐶𝑑

𝑣𝑓𝑤𝜌𝑗 + 𝜆𝑁−1𝐶𝑑

≥
𝑤𝜌𝑗𝑣𝑓𝐶𝑑

(𝑣𝑓𝑤𝜌
𝑗 + 𝜆𝑁−1𝐶𝑑) (𝜌

𝑗 −
𝐶𝑑
𝑣𝑓
)
(𝜌𝑁−1 −

𝐶𝑑
𝑣𝑓
) ,

𝑣𝑓𝑤𝜌
𝑗

𝑣𝑓 + 𝑤
= 𝐶 ≥

𝐶

𝜌𝑗 −
𝐶𝑑
𝑣𝑓

(𝜌𝑁−1 −
𝐶𝑑
𝑣𝑓
) .

 

Thus �̇�𝑁−1 ≤ −min{
𝐶𝑑

𝜌𝑗−
𝐶𝑑
𝑣𝑓

, 𝑣𝑓 ,
𝑤𝜌𝑗𝑣𝑓𝐶𝑑

(𝑣𝑓𝑤𝜌
𝑗+𝜆𝑁−1𝐶𝑑)(𝜌

𝑗−
𝐶𝑑
𝑣𝑓
)

,
𝐶

𝜌𝑗−
𝐶𝑑
𝑣𝑓

} (𝜌𝑁−1 −
𝐶𝑑

𝑣𝑓
). If 𝑣𝑁−2 > 0, i.e., 

𝑣‾𝑁−2 > 0, 

�̇�𝑁−1 ≤ 𝑣‾𝑁−2𝜌𝑁−2 − 𝑞𝑁 = −𝜆𝑁−2 (𝜌𝑁−1 −
𝐶𝑑
𝑣𝑓
). 

To conclude, 

�̇�𝑁−1 ≤ −𝛼 (𝜌𝑁−1 −
𝐶𝑑
𝑣𝑓
), 
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where 

𝛼 = min{
𝐶𝑑

𝜌𝑗 −
𝐶𝑑
𝑣𝑓

, 𝑣𝑓 ,
𝑤𝜌𝑗𝑣𝑓𝐶𝑑

(𝑣𝑓𝑤𝜌𝑗 + 𝜆𝑁−1𝐶𝑑) (𝜌𝑗 −
𝐶𝑑
𝑣𝑓
)
,

𝐶

𝜌𝑗 −
𝐶𝑑
𝑣𝑓

, 𝜆𝑁−2} > 0. 

Therefore limsup
𝑡→∞

𝜌𝑁−1(𝑡) ≤ 𝐶𝑑/𝑣𝑓 and liminf
𝑡→∞

𝑣‾𝑁−1,2 ≥ 𝑣𝑓 due to 𝑣‾𝑁−1,2 =
𝐶𝑑+(𝑣𝑓−𝜆𝑁−1)𝑥𝑁

𝐶𝑑/𝑣𝑓+𝑥𝑁−1
≥

𝐶𝑑

𝜌𝑁−1
, which implies lim𝑡→∞𝑣𝑁−1 = 𝑣𝑓. 

Similarly, we can show that limsup
𝑡→∞

𝜌𝑖(𝑡) ≤ 𝐶𝑑/𝑣𝑓  and lim𝑡→∞𝑣𝑖 = 𝑣𝑓 for 𝑖 = 1,2, . . . , 𝑁 − 1. 

Then the dynamics of 𝜌(𝑡) become 

�̇�1 = min{𝑑,
𝑣‾0𝑤𝜌

𝑗

𝑣‾0 + 𝑤
,
𝑣𝑓𝑤𝜌

𝑗

𝑣𝑓 + 𝑤
} − 𝑣𝑓𝜌1 = min{𝑑 − 𝑣𝑓𝜌1, 𝐶 − 𝑣𝑓𝜌1, −𝜆0(𝜌1 − 𝐶𝑑/𝑣𝑓)},

�̇�𝑖 = 𝑣𝑓𝜌𝑖−1 − 𝑣𝑓𝜌𝑖 , 𝑖 = 2, . . . , 𝑁.

 

Note that the first differential equation is the same as equation (183) in the single-section case. 
Therefore we can directly take the analysis result of equation (183), which shows that 𝜌1 

converges to 𝜌1 =
min{𝑑,𝐶𝑑}

𝑣𝑓
 exponentially fast. Consequently, 𝜌𝑖  converges exponentially fast to 

𝜌𝑖 =
min{𝑑,𝐶𝑑}

𝑣𝑓
, for 𝑖 = 1,2, . . . , 𝑁. Recall that 𝜌𝑁(𝑡) ≤

𝐶𝑑

𝑣𝑓
, ∀𝑡 ≥ 𝑡0, thus 𝑞𝑁+1 converges to 𝐶𝑑 

exponentially fast. Consequently, 𝑞𝑖 converge to 𝐶𝑑 exponentially fast for 𝑖 = 1,2, . . . , 𝑁. 

b) This part can be shown directly with part e) of Theorem 1.4.   
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Appendix G: The Proof of Lemma 1.2 

Proof. Let us use the transformation 𝑥1(𝑡) = 𝜌(𝑡) − 𝜌
⋆ and 𝑥2(𝑡) = 𝛷(𝑡) −

𝜇

𝜆2
 to shift the 

equilibrium point of system (69) to the origin (0,0). Let 𝑥 = [𝑥1, 𝑥2]
𝑇 be the shifted state vector 

of system (69). Based on the value of 𝑞1, we have the following three cases: 

Case 1. When 0 ≤ 𝑞‾1𝑣 ≤ 𝑑, i.e., 𝑥 ∈ 𝑆1 = {𝑥|𝑣𝑓𝜌
⋆ − 𝜇 − 𝑑 ≤ (𝜆1 − 𝑣𝑓)𝑥1 + 𝜆2𝑥2 ≤ 𝑣𝑓𝜌

⋆ − 𝜇}, 

we have 𝑞1 = 𝑞‾1𝑣, and the dynamics of system (69) can be rewritten as: 

Case 2. When 𝑞‾1𝑣 < 0, i.e., 𝑥 ∈ 𝑆2 = {𝑥|(𝜆1 − 𝑣𝑓)𝑥1 + 𝜆2𝑥2 > 𝑣𝑓𝜌
⋆ − 𝜇}, we have 𝑞1 = 0, and 

the dynamics of system (69) can be rewritten as: 

�̇�1 = −𝑣𝑓𝑥1 − 𝑣𝑓𝜌
⋆ + 𝜇

�̇�2 = 𝑥1
 

Case 3. When 𝑞‾1𝑣 > 𝑑, i.e., 𝑥 ∈ 𝑆3 = {𝑥|(𝜆1 − 𝑣𝑓)𝑥1 + 𝜆2𝑥2 < 𝑣𝑓𝜌
⋆ − 𝜇 − 𝑑}, we have 𝑞1 = 𝑑, 

and the dynamics of system (69) can be rewritten as: 

Therefore, the state space is divided as shown in Figure 146 

 

Figure 146. State Space 
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 �̇�1 = −𝜆1𝑥1 − 𝜆2𝑥2
�̇�2 = 𝑥1

 
(185) 

 �̇�1 = −𝑣𝑓𝑥1 − 𝑣𝑓𝜌
⋆ + 𝜇

�̇�2 = 𝑥1
 

(186) 

 �̇�1 = −𝑣𝑓𝑥1 − 𝑣𝑓𝜌
⋆ + 𝜇 + 𝑑

�̇�2 = 𝑥1
 

(187) 
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It is clear that system (185) has a unique equilibrium point 𝑥𝑒 = [0,0]𝑇 ∈ 𝑆1, whereas system 
(186) and (187) have no equilibrium points. 

Consider the following Lyapunov function 

where 

𝑃 = [
2 𝜆1
𝜆1 𝜆1

2 + 2𝜆2
] 

𝑉(𝑥) is positive definite since the matrix 𝑃 is symmetric and positive definite. 

For all 𝑥 ∈ 𝑆1, we have 

�̇� = 𝐴𝑥 

where 

𝐴 = [
−𝜆1 −𝜆2
1 0

] 

The derivative of the above Lyapunov function (188) is 

�̇�(𝑥) = 𝑥𝑇(𝐴𝑇𝑃 + 𝑃𝐴)𝑥 = −𝑥𝑇𝑄𝑥, 

where 

𝑄 = [
2𝜆1 0

0 2𝜆1𝜆2
]. 

Thus, �̇�(𝑥) < 0 for all 𝑥 ∈ 𝑆1 ∖ {0}. 

Now, we are going to show that if ∃𝑡0 ≥ 0, such that 𝑥(𝑡0) ∈ 𝑆3, then ∃𝑡1 > 𝑡0, such that 
𝑥(𝑡1) ∈ 𝑆1. Let 𝛼 = 𝑣𝑓𝜌

⋆ − 𝜇 − 𝑑. If ∃𝑡0 ≥ 0, such that 𝑥(𝑡0) ∈ 𝑆3, then according to (187) we 

have that 

𝑑𝑥2
𝑑𝑥1

=
𝑥1

−𝑣𝑓𝑥1 − 𝛼
= −

1

𝑣𝑓
+

𝛼

𝑣𝑓
2𝑥1 + 𝑣𝑓𝛼

𝑑𝑥2 = −
1

𝑣𝑓
𝑑𝑥1 +

𝛼

𝑣𝑓
2𝑥1 + 𝑣𝑓𝛼

𝑑𝑥1

 

taking the integral of both sides, we get 

 𝑉(𝑥) = 𝑥𝑇𝑃𝑥, (188) 
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From (187), we know that 𝑥1(𝑡) approaches −
𝛼

𝑣𝑓
 when 𝑥 ∈ 𝑆3. According to the above 

equation (189), 𝑥2 approaches infinity as 𝑥1(𝑡) approaches −
𝛼

𝑣𝑓
. Thus, at some finite time 

instant 𝑡1, 𝑥2(𝑡1) is large enough and (𝜆1 − 𝑣𝑓)𝑥1 + 𝜆2𝑥2 = 𝑣𝑓𝜌
⋆ − 𝜇 − 𝑑, i.e., 𝑥 ∈ 𝑆1. 

Then, we show that if ∃𝑡0 ≥ 0, at which 𝑥(𝑡0) lies on the boundary between 𝑆1 and 𝑆3, and 
𝑥(𝑡) moves towards 𝑆3, then ∃𝑡1 > 𝑡0, at which 𝑥(𝑡1) lies on the boundary between 𝑆1 and 𝑆3, 

and 𝑥(𝑡) moves towards 𝑆1. Furthermore, 𝑉(𝑥(𝑡0)) > 𝑉(𝑥(𝑡1)). The normal vector of the 

boundary line which points to 𝑆3 is 𝑉𝑛 = [𝑣𝑓 − 𝜆1, −𝜆2]
𝑇

. If ∃𝑡0 ≥ 0, at which 𝑥(𝑡0) lies on the 

boundary between 𝑆1 and 𝑆3, and 𝑥(𝑡) moves towards 𝑆3, we have the following: 

𝑥(𝑡0) = [𝑥1(𝑡0), 𝑥2(𝑡0)]
𝑇 

and 

�̇�(𝑡0) = [−𝑣𝑓𝑥1(𝑡0) − 𝛼, 𝑥1(𝑡0)]
𝑇

 

Since �̇�(𝑡0) points to 𝑆3, 𝑉𝑛
𝑇�̇�(𝑡0) > 0, that is 

[𝑣𝑓(𝜆1 − 𝑣𝑓) − 𝜆2]𝑥1(𝑡0) − (𝑣𝑓 − 𝜆1)𝛼 > 0 

𝑥1(𝑡0) >
(𝑣𝑓 − 𝜆1)𝛼

𝑣𝑓(𝜆1 − 𝑣𝑓) − 𝜆2
> −

𝛼

𝑣𝑓
 

due to 𝜆1 > 𝑣𝑓 +
𝜆2

𝑣𝑓
. According to (187), if 𝑥(𝑡0) ∈ 𝑆3 and 𝑥1(𝑡0) > −

𝛼

𝑣𝑓
, then 𝑥1(𝑡) >

−
𝛼

𝑣𝑓
 and �̇�1(𝑡) < 0, ∀𝑡 > 𝑡0, as long as 𝑥(𝑡) stays in 𝑆3. Together with (189), we know that 

∃𝑡1 > 𝑡0, at which the trajectory of 𝑥(𝑡) crosses the boundary line and moves towards 𝑆1, 

𝑥1(𝑡1) > −
𝛼

𝑣𝑓
 and 𝑥1(𝑡1) < 𝑥1(𝑡0). For all points on the boundary line between 𝑆1 and 𝑆3, the 

Lyapunov function is evaluated as 

𝑉(𝑥) = 2𝑥1
2 + 2𝜆1𝑥1𝑥2 + (𝜆1

2 + 2𝜆2)𝑥2
2, 

whose partial derivative with respect to 𝑥1 along the boundary line is 

Since 𝑥(𝑡0) = [𝑥1(𝑡0),−
𝜆1−𝑣𝑓

𝜆2
𝑥1(𝑡0) +

𝛼

𝜆2
]
𝑇

 on the boundary line, we have that 

𝑥2(𝑡) − 𝑥2(𝑡0) = −
1

𝑣𝑓
(𝑥1(𝑡) − 𝑥1(𝑡0)) +

𝛼

𝑣𝑓
2 [ln(𝑣𝑓

2𝑥1(𝑡) + 𝑣𝑓𝛼) − ln(𝑣𝑓
2𝑥1(𝑡0) + 𝑣𝑓𝛼)] 

𝑥2(𝑡) = −
1

𝑣𝑓
𝑥1(𝑡) +

𝛼

𝑣𝑓
2 ln(𝑣𝑓

2𝑥1(𝑡) + 𝑣𝑓𝛼) + 𝑥2(𝑡0) +
1

𝑣𝑓
𝑥1(𝑡0) −

𝛼

𝑣𝑓
2 ln(𝑣𝑓

2𝑥1(𝑡0) + 𝑣𝑓𝛼) 

(189) 

 ∂𝑉

∂𝑥1
= 4𝑥1 + 2𝜆1𝑥2 + 2𝜆1𝑥1

∂𝑥2
∂𝑥1

+ 2(𝜆1
2 + 2𝜆2)

∂𝑥2
∂𝑥1

 
(190) 
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∂𝑥2
∂𝑥1

= −
𝜆1 − 𝑣𝑓

𝜆2
. 

Thus, (190) can be rewritten as 

∂𝑉

∂𝑥1
= 𝑎𝑥1 + 𝑏 

where 

𝑎 = 4 − 4𝜆1
𝜆1 − 𝑣𝑓

𝜆2
+ 2(𝜆1

2 + 2𝜆2) (
𝜆1 − 𝑣𝑓

𝜆2
)

2

 

and 

𝑏 = 2[𝜆1 − (𝜆1
2 + 2𝜆2)]

𝛼

𝜆2
. 

Note that 

𝑎 = 2 [1,
𝜆1 − 𝑣𝑓

𝜆2
]

𝑇

𝑃 [1,
𝜆1 − 𝑣𝑓

𝜆2
] > 0 

due to 𝑃 been positive definite, and 

𝑎 (−
𝛼

𝜆2
) + 𝑏 = −[2𝜆1

2(𝜆1 − 𝑣𝑓) + 2𝜆1𝜆2]𝛼 > 0 

due to 𝛼 < 0 and 𝜆1 > 𝑣𝑓 +
𝜆2

𝑣𝑓
. Thus, ∀𝑥1 > −

𝛼

𝜆2
, 
∂𝑉

∂𝑥1
= 𝑎𝑥1 + 𝑏 > 0. Therefore, −

𝛼

𝜆2
<

𝑥1(𝑡1) < 𝑥1(𝑡0), indicating that 𝑉(𝑥(𝑡0)) > 𝑉(𝑥(𝑡1)). 

Similarly, we can show that if ∃𝑡0 ≥ 0, such that 𝑥(𝑡0) ∈ 𝑆2, then ∃𝑡1 > 𝑡0, such that 𝑥(𝑡1) ∈
𝑆1. Moreover, if ∃𝑡0 ≥ 0, at which 𝑥(𝑡0) lies on the boundary line between 𝑆1 and 𝑆2 and 𝑥(𝑡) 
moves towards 𝑆2, then ∃𝑡1 > 𝑡0, at which 𝑥(𝑡0) lies on the boundary between 𝑆1 and 𝑆2, and 

𝑥(𝑡) moves towards 𝑆1. Furthermore, 𝑉(𝑥(𝑡0)) > 𝑉(𝑥(𝑡1)). 

Summarizing the behavior of the Lyapunov function 𝑉(𝑥), we conclude that ∀𝑥(𝑡0) ∈ ℜ
2, 𝑥(𝑡) 

converges to 𝑥𝑒 = [0,0]𝑇 asymptotically, which implies that ∀(𝜌(𝑡0),𝛷(𝑡0)) ∈ ℜ
2, 

[𝜌(𝑡), 𝛷(𝑡)]𝑇 asymptotically converges to [𝜌⋆,
𝜇

𝜆2
]
𝑇

. 

It follows from (69) that 

−𝑣𝑓𝑥1 − (𝑣𝑓𝜌
⋆ − 𝜇) ≤ �̇�1 ≤ −𝑣𝑓𝑥1 − (𝑣𝑓𝜌

⋆ − 𝜇 − 𝑑), 
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thus for all −
𝑣𝑓𝜌

⋆−𝜇

𝑣𝑓
< 𝑥1(𝑡0) < −

𝑣𝑓𝜌
⋆−𝜇−𝑑

𝑣𝑓
, −

𝑣𝑓𝜌
⋆−𝜇

𝑣𝑓
< 𝑥1(𝑡) < −

𝑣𝑓𝜌
⋆−𝜇−𝑑

𝑣𝑓
, ∀𝑡 ≥ 𝑡0. We have 

also shown that if 𝑥(𝑡) ∈ 𝑆1 ∩ {𝑥| −
𝑣𝑓𝜌

⋆−𝜇

𝑣𝑓
< 𝑥1 < −

𝑣𝑓𝜌
⋆−𝜇−𝑑

𝑣𝑓
}, 𝑥(𝑡) will not leave 𝑆1. 

Therefore, ∀𝑥(𝑡0) ∈ 𝑆 = {𝑥|𝑣𝑓𝜌
⋆ − 𝜇 − 𝑑 ≤ (𝜆1 − 𝑣𝑓)𝑥1 + 𝜆2𝑥2 ≤ 𝑣𝑓𝜌

⋆ − 𝜇} ∩ {𝑥| −
𝑣𝑓𝜌

⋆−𝜇

𝑣𝑓
< 𝑥1 < −

𝑣𝑓𝜌
⋆−𝜇−𝑑

𝑣𝑓
}, 𝑥1(𝑡) ∈ 𝑆, ∀𝑡 ≥ 𝑡0, implying that ∀(𝜌(𝑡0), 𝛷(𝑡0)) ∈

𝑆, (𝜌(𝑡) − 𝜌⋆) ∈ 𝑆, ∀𝑡 ≥ 𝑡0.   
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Appendix H: TDSP Extensions 

Multiple Clients with Service Time 

We consider the problem of scheduling the rest stops for a long-haul truck trip with a known 
route and multiple clients while taking into account the USA HOS regulations and estimated 
parking availability windows for all rest areas along the route. It is assumed that the rest areas 
are located on the route and require no detours to be accessed. The parking availability time-
windows are assumed known. The route has 𝑛 + 1nodes, 2 of which are the origin, node 0, and 
destination of the truck, node 𝑛 . The other nodes are either clients, rest areas, or dummy 
locations used to model special cases. Let 𝑁 = {0,1, … , 𝑛} be the set of all locations, 𝑁𝑟 ⊂ 𝑁 
the set of rest areas, 𝑁𝑐 ⊂ 𝑁 the set of client locations, and 𝑁𝑐𝑟 ⊂ 𝑁 is the set of dummy 
locations used to model resting at a client location immediately after completing the required 
service. Every node in 𝑁𝑐𝑟 is positioned right after a node in 𝑁𝑐, and the travel time between 
them is zero. The dummy locations used for resting at a client location before starting the 
service are treated as regular rest areas. The travel time, 𝑑𝑖 , between locations 𝑖 and 𝑖 + 1 is 
assumed constant, 𝑥𝑖,𝑎 and 𝑥𝑖,𝑑 represent the arrival and departure time of the truck at location 

𝑖 , respectively. Each location 𝑖 has 𝑇𝑖 time-windows [𝑡𝑖,𝜏
𝑚𝑖𝑛, 𝑡𝑖,𝜏

𝑚𝑎𝑥], where 𝜏 ∈ {1,2, … , 𝑇𝑖} 

indicates the time-window’s index. The time-windows restrict the arrival time at that node and 
are only in effect when the truck has to stop at that specific node, driving by it is not 
constrained by the time windows. For each location and time-window, a binary variable 𝑦𝑖,𝜏 
represents if that specific time window is being used (yes:1, no:0). Driving by without stopping 
is represented by the variable 𝑦𝑖,0 (drive by:1, stop:0). In the case of rest areas, the time-
windows represent the area’s parking availability, whereas for client locations the time-
windows represent delivery time constraints imposed by the client. The driver must stop at all 
clients, so 𝑦𝑖,0 = 0 for all client locations. Each client has a service time 𝑠𝑖 which is assumed 
constant. 

The schedule must comply with the USA HOS regulations. Some HOS rules regulate driving time 
or elapsed time, so they are not affected by the inclusion of service time in the model. 
However, regulations that consider on-duty time must account for the service time, as the 
driver is working during that time. 𝑅 is defined as the set of different types of rest period 
described in the regulation. For each 𝑟 ∈ 𝑅 , 𝑡𝑟 defines the minimum duration of that type of 
rest period. 𝐶 is the set of constraints imposed by the regulation. 𝐶1 ⊆ 𝐶 is the set of 
constraints controlling the maximum elapsed time between off-duty periods. 𝐶2 ⊆ 𝐶 is the set 
of constraints controlling the maximum accumulated driving time between off-duty periods. 
𝐶3 ⊆ 𝐶 is the set of constraints controlling the maximum accumulated on-duty time during a 
rolling time-window; the width of the time-window for a constraint 𝑐 ∈ 𝐶3 is represented by 𝛿𝑐. 
In the USA regulation 𝛿𝑐 is 7 days, so these rolling time-window constraints will be referred to 
as weekly constraints. For each constraint 𝑐 ∈ 𝐶, 𝑡𝑐 is the time limit imposed by the regulation 
and 𝑅𝑐 ⊆ 𝑅 is the set of rest types that can reset this counter. The binary variable 𝑧𝑖,𝑟 indicates 
whether a rest of type 𝑟 is taken at location 𝑖 (yes:1, no:0). The driver cannot take more than 
one type of rest at the same location. If no type of rest is schedule for a rest area, the driver 

cannot stop there. The departure time from the origin must be within the interval [𝑡0, 𝑡𝑑𝑒𝑝]. It is 
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assumed that the driver has been off-duty for long enough before the departure time, so that 
all constraints’ counters are reset before departure. 

It is important to note that these rules state that the driver cannot drive after the time limit is 
reached, not that he/she cannot work. Therefore, the limit can be exceeded during service time 
as long as the driver can rest at the client location immediately after, without having to drive. 
Because of this the dummy nodes used to model resting at client locations after working need 
to be treated differently. The extended model without the weekly constraints is the following: 

 min 𝑥𝑛,𝑎 − 𝑥0,𝑑 (191) 

s.t.: 𝑥𝑖,𝑑 + 𝑑𝑖 = 𝑥𝑖+1,𝑎, ∀0 ≤ 𝑖 ≤ 𝑛 − 1 (192) 

 𝑥𝑖,𝑎 +∑𝑡𝑟𝑧𝑖,𝑟
𝑟∈𝑅

≤ 𝑥𝑖,𝑑, 𝑖 ∈ 𝑁\𝑁𝑐  (193) 

 𝑥𝑖,𝑎 + 𝑠𝑖 = 𝑥𝑖,𝑑, 𝑖 ∈ 𝑁𝑐 (194) 

 𝑥𝑖,𝑑 ≤ 𝑥𝑖,𝑎 + (1 − 𝑦𝑖,0)𝑡ℎ𝑜𝑟 , ∀1 ≤ 𝑖 ≤ 𝑛 (195) 

 

𝑦𝑖,0 +∑𝑦𝑖,τ

𝑇𝑖

τ=1

= 1, ∀1 ≤ 𝑖 ≤ 𝑛 (196) 

 𝑦𝑖,0 = 0, 𝑖 ∈ 𝑁𝑐 (197) 

 

∑𝑦𝑖,τ

𝑇𝑖

τ=1

=∑𝑧𝑖,𝑟
𝑟∈𝑅

, ∀𝑖/∈ 𝑁𝑐 ∪ {0} (198) 

 ∑𝑧𝑖,𝑟
𝑟∈𝑅

= 0, ∀𝑖 ∈ 𝑁𝑐 ∪ {0} (199) 

 

∑𝑦𝑖,τ

𝑇𝑖

τ=1

𝑡𝑖,τ
𝑚𝑖𝑛 ≤ 𝑥𝑖,𝑎, ∀1 ≤ 𝑖 ≤ 𝑛 (200) 

 

𝑥𝑖,𝑎 ≤ 𝑡ℎ𝑜𝑟 −∑[𝑦𝑖,τ(𝑡ℎ𝑜𝑟 − 𝑡𝑖,τ
𝑚𝑎𝑥)]

𝑇𝑖

τ=1

, ∀1 ≤ 𝑖 ≤ 𝑛 (201) 

 
𝑥𝑘,𝑎 − 𝑥𝑖,𝑑 ≤ 𝑡𝑐 + 𝑡ℎ𝑜𝑟 ∑ ∑ 𝑧𝑗,𝑟

𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑖+1

, ∀0 ≤ 𝑖 < 𝑘 ≤ 𝑛, 𝑘/∈ 𝑁𝑐𝑟 , 𝑐 ∈ 𝐶1 (202) 

 
𝑥𝑘,𝑎 − 𝑥𝑖,𝑑 ≤ 𝑡𝑐 + 𝑡ℎ𝑜𝑟 ∑ ∑ 𝑧𝑗,𝑟

𝑟∈𝑅𝑐

𝑘

𝑗=𝑖+1

, ∀0 ≤ 𝑖 < 𝑘 ≤ 𝑛, 𝑘 ∈ 𝑁𝑐𝑟 , 𝑐 ∈ 𝐶1 (203) 
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∑𝑑𝑗

𝑘−1

𝑗=𝑖

≤ 𝑡𝑐 + 𝑡ℎ𝑜𝑟 ∑ ∑ 𝑧𝑗,𝑟
𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑖+1

, ∀0 ≤ 𝑖 < 𝑘 ≤ 𝑛, 𝑐 ∈ 𝐶2 (204) 

 𝑥𝑖 ∈ [0, 𝑡ℎ𝑜𝑟]
2, 𝑦𝑖 ∈ {0,1}

𝑇𝑖+1, 𝑧𝑖 ∈ {0,1}
|𝑅|, ∀0 ≤ 𝑖 ≤ 𝑛 + 1 (205) 

 𝑥0,𝑑 ∈ [0, 𝑡𝑑𝑒𝑝] (206) 

The objective function (191) is set to minimize the total trip duration. Constraint (192) 
guarantees that the arrival time equals the departure time of the previous location plus the 
driving time. Constraint (193) states that the vehicle must stay at a location (clients excluded) at 
least for the minimum rest time decided for that location. Constraint (194) states that the 
vehicle must depart a client location as soon as the service time is over. Constraint (195) 
controls what happens when the driver does not stop at a certain location. If the vehicle does 
not stop at location 𝑖 , the arrival time equals the departure time. This constraint works with 
constraints (193), (196) and (198) to assure this. Equality will hold when 𝑦𝑖,0 = 1. If 𝑦𝑖,0 = 0, 

then constraint (195) is always true as 𝑡ℎ𝑜𝑟 is large. Constraint (196) states that at any location, 
either exactly one time-window is used or the vehicle does not stop. Constraint (197) states 
that the driver must stop at all client locations. Constraint (198) states that the driver only stops 
if an off-duty period is scheduled. Constraints (200) and (201) check the time-windows. Arrival 
must happen after the beginning and before the end of the chosen time window. Constraints 
(202) and (203) check that the time elapsed since the last rest in 𝑅𝑐, 𝑐 ∈ 𝐶1 is less than 𝑡𝑐. 
Constraint (204) checks if the accumulated driving time between rest periods in 𝑅𝑐 , 𝑐 ∈ 𝐶2 is 
less than 𝑡𝑐. Constraint (205) sets the variables’ domains, and (206) guarantees that the 
departure time from the origin is within the required period and that the vehicle will stop at the 
destination. 

Weekly Constraints 

The constraints described here are from the set 𝐶3 , for simplicity we will consider that |𝐶3| = 1 
and will omit the index 𝑐 , which indicates to which rule the variable refers to, from the 
variables. In the USA regulation only one rolling time-window constraint is used at a time, so 
this assumption is reasonable. Nevertheless, if more constraints are needed for a specific 
country, they can be added separately. The constraints 𝐶3 can be simplified to limit the on-duty 
time between two weekly rests, instead of limiting the on-duty time during a rolling time-
windows. This formulation will give suboptimal results in certain scenarios, but also guarantees 
regulation compliant schedules. These two formulations will be presented separately to avoid 
confusion. 

Simplified Constraint 

As mentioned previously, this simplified formulation limits the on-duty time between weekly 
rests, accounting for the possibility of resting immediately after finishing work at a client. 
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∑𝑑𝑗

𝑘−1

𝑗=𝑖

+ ∑ 𝑠𝑗

𝑘−1

𝑗=𝑖+1

≤ 𝑡𝑐 + 𝑡ℎ𝑜𝑟 ∑ ∑ 𝑧𝑗,𝑟
𝑟∈𝑅𝑐

𝑘−1

𝑗=𝑖+1

, ∀0 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛,  𝑘 ∈ 𝑁 ∖ 𝑁𝑐𝑟 ,  𝑐 ∈ 𝐶3 (207) 

 
∑𝑑𝑗

𝑘−1

𝑗=𝑖

+ ∑ 𝑠𝑗

𝑘−1

𝑗=𝑖+1

≤ 𝑡𝑐 + 𝑡ℎ𝑜𝑟 ∑ ∑ 𝑧𝑗,𝑟
𝑟∈𝑅𝑐

𝑘

𝑗=𝑖+1

, ∀0 ≤ 𝑖 ≤ 𝑘 ≤ 𝑛, 𝑘 ∈ 𝑁𝑐𝑟 , 𝑐 ∈ 𝐶3 (208) 

Constraint (207) checks if the accumulated driving and service time between departure from 
location 𝑖 and arrival at location 𝑘 is below the limit; the constraint is automatically satisfied if 
an appropriate rest is taken at any location in between, not including 𝑖 and 𝑘. Constraint (208) 
treats the particular case of resting after working at a client. Similarly, it checks if the 
accumulated driving and service time between departure from location 𝑖 and arrival at location 
𝑘 is below the limit, but now, an appropriate rest at 𝑘 can also satisfy the constraint. As 𝑘 ∈
𝑁𝑐𝑟, resting at 𝑘 is equivalent to resting at the client location right after the work is completed. 
The driver does not need to drive between 𝑘 − 1 and 𝑘, so the regulation is not violated even if 
the on-duty time limit is exceeded during the service at 𝑘. 

Rolling Time-Window Constraint 

This constraint makes it so the driver cannot drive after having accumulated more than 𝑡𝑐 on-
duty hours over the last 𝛿𝑐 hours, with 𝑐 ∈ 𝐶3. Let 𝜆𝑖(𝑡) represent the accumulated driving time 
generated by the service at location 𝑖 and the displacement between locations 𝑖 and 𝑖 + 1 
measured at time 𝑡. 𝜆𝑖(𝑡) is described by: 

 𝜆𝑖(𝑡) = 𝑅(𝑡 − 𝑥𝑖,𝑑) − 𝑅(𝑡 − 𝑥𝑖+1,𝑎) − 𝑅(𝑡 − 𝑥𝑖,𝑑 − 𝛿𝑐) + 𝑅(𝑡 − 𝑥𝑖+1,𝑎 − 𝛿𝑐),

∀0 ≤ 𝑖 ≤ 𝑛 − 1,  𝑖 ∈ 𝑁 ∖ 𝑁𝑐,  𝑐 ∈ 𝐶3
 (209) 

 𝜆𝑖(𝑡) = 𝑅(𝑡 − 𝑥𝑖,𝑎) − 𝑅(𝑡 − 𝑥𝑖+1,𝑎) − 𝑅(𝑡 − 𝑥𝑖,𝑎 − 𝛿𝑐) + 𝑅(𝑡 − 𝑥𝑖+1,𝑎 − 𝛿𝑐),

∀0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑖 ∈ 𝑁𝑐, 𝑐 ∈ 𝐶3
 (210) 

where 𝑅(𝑡) is the unit ramp function. Equation (209) represents the accumulated on-duty time 
generated when 𝑖 is not a client location. As any time spent at 𝑖 is used for resting, the on-duty 
time only starts being counted after departure ( 𝑡 = 𝑥𝑖,𝑑), the count stops upon arrival at the 
next location (𝑡 = 𝑥𝑖+1,𝑎), and stays constant until 𝑡 = 𝑥𝑖,𝑑 + 𝛿𝑐, when that on-duty time starts 
leaving the rolling time-window until reaching zero again at 𝑡 = 𝑥𝑖+1,𝑎 + 𝛿𝑐. Equation (210) is 

used when 𝑖 is a client location, so the service time at i also needs to be counted. Therefore, the 
on-duty time starts being counted when the driver arrives at 𝑖, 𝑡 = 𝑥𝑖,𝑎. The functions 𝜆𝑖(𝑡) are 
included in the model as piecewise linear functions. The domains of the functions are divided in 
sections according to when the slope of the functions change, and auxiliary variables are used 
to write t according to where it is located relative to the sections’ boundaries. For this problem, 
it suffices to evaluate 𝜆𝑖(𝑡) at the arrival times 𝑥𝑗,𝑎, 𝑗 > 𝑖 , so we define the variables 𝜆𝑖,𝑗 =

𝜆𝑖(𝑥𝑗,𝑎). The sets of variables {𝛼𝑖,𝑗,𝑝}, {𝛽𝑖,𝑗,𝑞} are used to define {𝜆𝑖,𝑗} as follows: 
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 α𝑖,𝑗,𝑝 ∈ {0,1}, β𝑖,𝑗,𝑞 ∈ [0,1], ∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛,  0 ≤ 𝑝 ≤ 4,  1 ≤ 𝑞 ≤ 5 (211) 

 1 ≥ α𝑖,𝑗,0 ≥ β𝑖,𝑗,1 ≥ α𝑖,𝑗,1 ≥ ⋯ ≥ α𝑖,𝑗,4 ≥ β𝑖,𝑗,5, ∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛 (212) 

 α𝑖,𝑗,𝑝 < β𝑖,𝑗,𝑝+1 + 1, ∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛 (213) 

 𝑥𝑗,𝑎 = 𝑥𝑖,𝑑𝛽𝑖,𝑗,1 + 𝑑𝑖𝛽𝑖,𝑗,2 + (𝛿𝑐 − 𝑑𝑖)𝛽𝑖,𝑗,3 + 𝑑𝑖𝛽𝑖,𝑗,4 + 𝑡ℎ𝑜𝑟𝛽𝑖,𝑗,5,

∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛,  𝑖 ∈ 𝑁 ∖ 𝑁𝑐,  𝑐 ∈ 𝐶3
 (214) 

 𝑥𝑗,𝑎 = 𝑥𝑖,𝑎𝛽𝑖,𝑗,1 + (𝑑𝑖 + 𝑠𝑖)𝛽𝑖,𝑗,2 + (𝛿𝑐 − 𝑑𝑖 − 𝑠𝑖)𝛽𝑖,𝑗,3 + (𝑑𝑖 + 𝑠𝑖)𝛽𝑖,𝑗,4 + 𝑡ℎ𝑜𝑟𝛽𝑖,𝑗,5,

∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛,  𝑖 ∈ 𝑁𝑐 ,  𝑐 ∈ 𝐶3
 (215) 

 λ𝑖,𝑗 = (𝑑𝑖 + 𝑠𝑖)(β𝑖,𝑗,2 − β𝑖,𝑗,4), ∀0 ≤ 𝑖 < 𝑗 ≤ 𝑛 (216) 

where the 𝛼’s and 𝛽’s are auxiliary variables used to model the piecewise definition of 𝜆𝑖,𝑗. The 

𝛼’s determine in which section of the function domain 𝑡 is, and the 𝛽’s define its exact position 
within the section, the indexes 𝑝 and 𝑞 represent the sections. Constraints (211), (212) and 
(213) imply that, for a section 𝑞 , whenever 0 < 𝛽∗,𝑞 < 1, then 𝛽∗,𝑞− = 1, 𝛼∗,𝑞− = 1,  ∀𝑞

− < 𝑞 , 

and 𝛽∗,𝑞+ = 0, 𝛼∗,𝑝 = 0,  ∀𝑞
+ > 𝑞, 𝑝 ≥ 𝑞. Constraints (214) and (215) write the time instant to 

be evaluated, 𝑥𝑗,𝑎 , as a function of the 𝛼’s and 𝛽’s. Constraint (216) uses the 𝛽’s to calculate 

𝜆𝑖(𝑥𝑗,𝑎). Due to (214) this problem would be a quadratically constrained problem. However, as 

(214) only considers 𝑗 > 𝑖 , the variables 𝛼𝑖,𝑗,𝑝 for 𝑝 < 2 and 𝛽𝑖,𝑗,𝑞 for 𝑞 < 3 will be always 1 and 

can be defined as constants. The accumulated driving time generated by all trips or service 
starting at locations {0, … , 𝑖} measured at time 𝑥𝑗,𝑎 is represented by 𝜓𝑖,𝑗. 

 

𝜓𝑖,𝑗 =

{
 
 

 
 𝜓𝑖 − 1, 𝑗 + 𝜆𝑖,𝑗, 𝑖𝑓 ∑ 𝑧𝑖,𝑟

𝑟∈𝑅𝑐

= 0

𝜆𝑖,𝑗 , 𝑖𝑓 ∑ 𝑧𝑖,𝑟
𝑟∈𝑅𝑐

= 1
∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛,  𝑐 ∈ 𝐶3 (217) 

 𝜓0,𝑗 = 𝜆0,𝑗, ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛 (218) 

 𝜓𝑗−1,𝑗 ≤ 𝑡𝑐 , ∀1 ≤ 𝑗 ≤ 𝑛, 𝑗 ∉ 𝑁𝑐𝑟 , 𝑐 ∈ 𝐶3 (219) 

where constraint (217) defines 𝜓𝑖,𝑗 and sets to zero all contributions from nodes before 

location 𝑖 when an appropriate rest is taken at location 𝑖. This model assumes that all 
constraints’ counters are reset before departure, so (218) sets the initial accumulated driving 
time to zero. Constraint (219) limits the accumulated on-duty time to the regulation limit 𝑡𝑐, for 
all nodes except if they are used for after-work rest at a client location. Similarly to what was 
explained for constraint (208), the limit can be exceed during a service time, as long as the 
driver rests immediately after, without driving. 
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Electric Vehicles 

Consider the previous problem, but now the truck used is electric, more specifically, battery 
electric. The truck has a battery with total capacity 𝐵 in 𝑘𝑊ℎ. When driving along a link 
(𝑖, 𝑖 + 1) the battery is consumed at a rate of 𝛾𝑖

𝑎 𝑘𝑊ℎ/ℎ, this rate is assumed constant for each 
link. The route has a set 𝑁𝑠 ⊂ 𝑁 ∖ 𝑁𝑐 of charging stations that allow the driver to both recharge 
the vehicle’s battery and rest. It is assumed that all charging stations can be used for resting, 
but not all rest areas are charging stations. During a stay at a charging station the battery will 
be recharged at a rate of 𝛾𝑖

𝑣 𝑘𝑊ℎ/ℎ, whereas during a stay at a regular rest area the battery 
charge is consumed at a rate 𝛾𝑖

𝑣 𝑘𝑊ℎ/ℎ due to the trucks auxiliary systems, like AC. As rest 
areas/charging stations have varying levels of infrastructure available, the rates of 
consumption/recharge can vary between locations. It is assumed that the battery cannot be 
charged during service at a client location. The battery charge cannot exceed the capacity 𝐵 
and it cannot be negative either. The time that a vehicle stays at a charging station is not 
limited, but it is assumed that the battery will automatically stop charging when full. The 
effective charging time at location 𝑖 ∈ 𝑁𝑠 is represented by 𝜂𝑖  . At locations without charging 
stations the vehicle will be consuming energy during the whole stay, so 𝜂𝑖  will be equal to the 
whole duration of stay. For simplicity, the model assumes that all parking spaces of a charging 
station are electrified, so the parking availability time-windows are also the charging station 
availability time-windows. If necessary, electrified and regular parking spaces can be separated 
by including a dummy location specifically for the charging station with a different time-window 
adjacent to the regular rest area. This can also be used to separate spaces with different 

charging rates at the same location. Let (𝑏𝑖,𝑎, 𝑏𝑖,𝑑) represent the battery charge at the time of 

arrival and departure at location 𝑖. The battery charge constraints can be described as follows: 

 𝜂𝑖 ≤ 𝑥𝑖,𝑑 − 𝑥𝑖,𝑎, ∀𝑖 ∈ 𝑁𝑠 (220) 

 𝜂𝑖 = 𝑥𝑖,𝑑 − 𝑥𝑖,𝑎, ∀𝑖 ∈ 𝑁 ∖ 𝑁𝑠 (221) 

 𝑏𝑖,𝑑 = 𝑏𝑖,𝑎 + 𝜂𝑖𝛾𝑖
𝑣, ∀1 ≤ 𝑖 ≤ 𝑛 (222) 

 𝑏𝑖,𝑎 = 𝑏𝑖−1,𝑑 + 𝑑𝑖𝛾𝑖
𝑎, ∀1 ≤ 𝑖 ≤ 𝑛 (223) 

 𝜂𝑖 ≥ 0,  (𝑏𝑖,𝑎, 𝑏𝑖,𝑑) ∈ [0, 𝐵]
2, ∀0 ≤ 𝑖 ≤ 𝑛 (224) 

Constraint (220) defines the effective charging time at charging stations, whereas constraint 
(221) fixes the effective consumption time to the whole stay everywhere else. Constraint (222) 
updates the battery level after a stay at any location. Constraint (223) updates the battery level 
after a displacement. Note that the 𝛾’s will be negative when consuming energy and positive 
when charging the battery. Constraint (224) defines the domains of the 𝑏’s and 𝜂’s. 

This model allows the optimization of the schedules of electric trucks with heterogeneous 
charging stations and rest areas. This extension can be directly added to the model presented 
previously, so the HOS and parking availability constraints are still considered, as well as the 
possibility of servicing multiple clients. Although this model allows for different consumption 
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rates to be used at each trip section, the rates are fixed. Energy consumption models found in 
the literature represent the energy consumption as a non-linear function of the vehicle speed, 
but this kind of consumption cannot be directly included in the current model. This model 
generates energy-feasible schedules, but does not optimize the energy consumption.  
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Appendix I: Trip Duration Lower-Bound 

The schedule is affected by the truck stops’ locations, by their availability windows, and by the 
HOS regulation. In order to calculate lower bounds for this problem, we can consider an ideal 
scenario where trucks have no restriction on parking location and time, only considering the 
HOS regulation. As the bounds are dependent only on the regulation being used, they can be 
calculated beforehand and used to evaluate the partial solutions obtained during the 
optimization. Here we consider the same structure of the USA regulation and assume that all 
resources are set to zero. An extension for the non-zero resources is presented later. Also, as 
the regulation treats service time and driving time differently, this formulation calculates the 
minimum trip duration for a trip with zero service time. When this is not the case, the service 
time can be added to the calculated lower-bound afterward. The bound will be looser in this 
case, but it still is a valid lower-bound for the trip duration. We calculated the lower bounds by 
optimizing the total trip duration for trip lengths (in terms of driving time) that do not use daily 
rests, then used this as a building block to optimize trips that do not need weekly rests, then for 
trips of any length. The parameters used are defined as follows: 

𝑡𝑏: minimum break duration; 

𝑡𝑟: minimum daily rest duration; 

𝑡𝑤: minimum weekly rest duration; 

𝑡𝑒𝑏 :limit for elapsed time between breaks; 

𝑡𝑒𝑟 :limit for elapsed time between daily rests; 

𝑡𝑎𝑟: limit for accumulated driving time between daily rests; 

𝑡𝑎𝑤: limit for accumulated on-duty time between weekly rests; 

𝜖: arbitrarily small positive constant. 

First we calculate the minimum trip duration for a trip with less than a day’s worth of driving 
time, ℒ𝑑(⋅). 

ℒ𝑑(𝑥) = 𝑥 + 𝑡𝑏 ⌊
𝑥 − 𝜖

𝑡𝑒𝑏
⌋ , 0 ≤ 𝑥 ≤ 𝑡𝑎𝑟 

where 𝑥 represents the trip length in hours, i.e., the total driving time of the trip. As 𝑥 was 
limited to less than the daily driving limit 𝑡𝑎𝑟, we just need to calculate the number of breaks 
that will be necessary during the day. The 𝜖 is used to avoid including a break when the driving 
time is exactly on the limit. 

Then ℒ𝑑(⋅) is used to describe the trip duration for trips with less than a week’s worth of 
driving time, ℒ𝑤(⋅), as follows: 

 𝑢(𝑥) = {
1 if 𝑥 > 0
0 if 𝑥 = 0

 (225) 
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𝑔𝑤(𝑦) = ℒ𝑑(𝑦0) +∑[𝑡𝑟𝑢(𝑦𝑖) + ℒ𝑑(𝑦𝑖)]

𝑛

𝑖=1

,

 𝑦 ∈ ℝ𝑛+1, 0 ≤ ∥∥𝑦∥∥∞ ≤ 𝑡𝑎𝑟

 (226) 

 𝐴(𝑥) = {𝑦 ∈ ℝ𝑛+1|0 ≤ ∥∥𝑦∥∥∞ ≤ 𝑡𝑎𝑟 ,

∥∥𝑦∥∥1 = 𝑥, 𝑛 = ⌊
𝑥 − 𝜖

𝑡𝑒𝑏
⌋}

 (227) 

 
ℒ𝑤(𝑥) = {

min
𝑦∈𝐴(𝑥)

𝑔𝑤(𝑦), 𝑡𝑎𝑟 < 𝑥 ≤ 𝑡𝑎𝑤

ℒ𝑑(𝑥), 0 ≤ 𝑥 ≤ 𝑡𝑎𝑟
 (228) 

The ‘shorter than a week’ trips described here can be divided in multiple ‘less than a day’ trips 
separated by daily rests. Function 𝑔𝑤(⋅) optimizes these smaller sections using ℒ𝑑(⋅) and adds 
a daily rests for each non-zero section, calculating the minimum trip duration given a vector 
𝑦 = (𝑦0, 𝑦1, … , 𝑦𝑛) composed of the 𝑛 + 1 section lengths 𝑦𝑖. Equation (228) optimizes the trip 
duration over all valid combinations of section lengths, with up to 𝑛 daily rests. Equation (227) 
defines the valid section length vectors, choosing 𝑛 such that the optimization considers 
enough daily rest to account for the case of taking a daily rest every time a break is needed. 

The same approach is used to calculate the trip duration for longer trips, ℒ𝑙(⋅), as follows: 

 
𝑔𝑙(𝑦) = ℒ𝑤(𝑦0) +∑[𝑡𝑤𝑢(𝑦𝑖) + ℒ𝑤(𝑦𝑖)]

𝑛

1

, 𝑦 ∈ ℝ𝑛+1, 0 ≤ ∥∥𝑦∥∥∞ ≤ 𝑡𝑎𝑤  (229) 

 𝐵(𝑥) = {𝑦 ∈ ℝ𝑛+1|0 ≤ ∥∥𝑦∥∥∞ ≤ 𝑡𝑎𝑤, ∥∥𝑦∥∥1 = 𝑥, 𝑛 = ⌊
𝑥 − 𝜖

𝐿
⌋} (230) 

 ℒ𝑙(𝑥) = { min𝑦∈𝐵(𝑥)
𝑔𝑙(𝑦), 𝑡𝑎𝑤 < 𝑥ℒ𝑤(𝑥), 0 ≤ 𝑥 ≤ 𝑡𝑎𝑤  (231) 

where 𝑡𝑒𝑏 ≤ 𝐿 ≤ 𝑡𝑎𝑤 should be chosen in a way that creates a vector long enough to test the 
different possibilities of moving driving hours between weeks to avoid breaks and daily rests 
when possible. This value affects the maximum number of weekly rests that the problem will 
consider in the optimization. Taking 𝐿 = 𝑡𝑒𝑏 certainly works as it is the maximum driving time 
allowed without any kind of rest. In the case of USA regulations, the optimization would 
consider even the case of taking a weekly rest every 8h of driving. For long trips this resolution 
might be excessive and will unnecessarily slow down the calculations due to the large number 
of possible vectors. An optimal schedule will have a high driving time to trip duration ratio, so 
we suggest taking 𝐿 as the length of the trip when the intermediate weekly cycles (the ones 

that are followed by a weekly rest) would be the most efficient, i.e., 𝐿 = argmax
𝑥≤𝑡𝑎𝑤

𝑥

ℒ𝑤(𝑥)+𝑡𝑤
. In 

the case of the regulations considered in this project, 𝐿 is equal to 55 hours. 

This formulation considers that all resources are set to zero, so it provides a very loose bound in 
most cases. At the cost of computational complexity and/or memory space, this can be 
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improved by including the current resources in the calculation. Consider the variables 𝛾𝑏, 𝛾𝑟 
and 𝛾𝑤 defined as follows: 

 𝛾𝑏 = 𝑡𝑒𝑏 − 𝜂
𝑏

𝛾𝑒 = 𝑡𝑒𝑟 − 𝜂
𝑟

𝛾𝑟 = min(𝑡𝑒𝑟 − 𝜂
𝑟 , 𝑡𝑎𝑟 − 𝜓

𝑟)

𝛾𝑤 = 𝑡𝑎𝑤 −𝜓
𝑤

 (232) 

where 𝜂𝑏, 𝜂𝑟, 𝜓𝑟  and 𝜓𝑤  are the current values of the relevant resources. The resources were 
defined in the section System Equations. The lower bounds with non-zero resources are defined 
as follows: 

ℒ𝑑′(𝑥, 𝛾𝑏) = 𝑥 + 𝑡𝑏 + 𝑡𝑏 ⌊
𝑥 − 𝛾𝑏 − 𝜖

𝑡𝑒𝑏
⌋ , 0 ≤ 𝑥 ≤ 𝑡𝑎𝑟 

ℒ𝑤′(𝑥, 𝛾𝑏 , 𝛾𝑟 , 𝛾𝑒) = min
𝑧≤min(𝛾𝑟,𝑥)

ℒ𝑑′(𝑧,𝛾𝑏)≤𝛾𝑒

(ℒ𝑑′(𝑧, 𝛾𝑏) + 𝑡𝑟𝑢(𝑥 − 𝑧) + ℒ𝑤(𝑥 − 𝑧)), 0 ≤ 𝑥 ≤ 𝑡𝑎𝑤
 

ℒ𝑙′(𝑥, 𝛾𝑏, 𝛾𝑟 , 𝛾𝑒 , 𝛾𝑤) = min
𝑧≤min(𝛾𝑤,𝑥)

(ℒ𝑤′(𝑧, 𝛾𝑏 , 𝛾𝑟 , 𝛾𝑒) + 𝑡𝑤𝑢(𝑥 − 𝑧) + ℒ𝑙(𝑥 − 𝑧)), 0 ≤ 𝑥 

The 𝐷𝐻𝑂𝑆(𝑥, 𝜃) used in 𝑨∗ is given by ℒ𝑙′(𝑥, 𝛾𝑏 , 𝛾𝑟 , 𝛾𝑤), where equations (232) are used to 
calculate 𝛾𝑏, 𝛾𝑟 and 𝛾𝑤 from 𝜃.  
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Appendix J: Dominance Rules Derivation 

For convenience, the notation used in this appendix is slightly different from the rest of the 

paper. Consider two labels 𝜃𝑖 = (𝜂𝑖
0, 𝑐𝑖, 𝜂𝑖

𝑏 , 𝜂𝑖
𝑟 , 𝜓𝑖

𝑟 , 𝜓𝑖
𝑤), 𝑖 ∈ {1,2}, with associated slack 

variables (𝜆0,𝑖, 𝜎0,𝑖, 𝜆𝑟,𝑖, 𝜎𝑟,𝑖), 𝑖 ∈ {1,2}, assigned to the same node 𝑣. For the 𝜃’s and resources, 

the index (1 or 2) is used to differentiate between the two labels being compared. For the 𝜆’s 
and 𝜎’s, the first index indicates if the slack is relative to the origin (0) or the last daily/weekly 
rest (𝑟), the second index indicates if the slack is part of label 𝜃1 or 𝜃2. We say that 𝜃2 is 
dominated by 𝜃1, if 𝜃2 cannot generate solutions better than the ones generated by 𝜃1. 

The intuitive dominance condition is to have each resource in 𝜃1 be smaller or equal to the 
corresponding resource in 𝜃2, with at least one being strictly smaller. However, as the partial 
solutions can be improved by removing the slacks in the schedule, these slacks must also be 
considered. Besides that, as we impose time-window constraints on the arrival time instead of 
on the activity starting time, the time resource has to be treated differently from other papers 
that use similar dominance rules, such as (Asvin Goel 2012). Without allowing early arrival, if 
𝜂1
0 < 𝜂2

0, then the solutions generated from 𝜃1 may be unable to satisfy the same time-
windows as solutions generated from 𝜃2 due to arriving too early. 

Equal time, no slack 

The base case for the dominance check is when the complexities of time-window constraints 
and slacks need not be considered. Let 𝜆0,𝑖 = 𝜎0,𝑖 = 𝜆𝑟,𝑖 = 𝜎𝑟,𝑖 = 0, 𝑖 ∈ {1,2} and 𝜂1

0 = 𝜂2
0. In 

this case, the labels cannot be improved by removing slacks and there is no difference between 
the time-windows that can be satisfied by paths generated from either label. 𝜃2 is dominated 
by 𝜃1 if all the following conditions hold, with at least one inequality being strict: 

 𝜂1
0 = 𝜂2

0

𝑐1 ≤ 𝑐2
𝜂1
𝑏 ≤ 𝜂2

𝑏

𝜂1
𝑟 ≤ 𝜂2

𝑟

𝜓1
𝑟 ≤ 𝜓2

𝑟

𝜓1
𝑤 ≤ 𝜓2

𝑤

 (233) 

Equal time, non-zero slack, after improvement 

First, consider how label improvement affects the resources. The new cost resource 𝑐𝑖
∗ after 

removing slacks relative to the origin is given by: 

 𝑐𝑖
∗ = 𝑐𝑖 + 𝛼0min(𝜆0,𝑖, 𝜎0,𝑖) − 𝛼𝑟min(𝜆0,𝑖, 𝜎0,𝑖) (234) 

The slack removal shifts time from activities with 𝛼𝑟 hourly cost to one with 𝛼0. When the slack 

regarding daily/weekly rests, (𝜆𝑟,𝑖, 𝜎𝑟,𝑖), is removed, the cost does not change as these activities 
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have the same hourly cost as breaks. In this case, to define dominance rules we pay attention 
to how these slacks can affect the resource 𝜂𝑖

𝑟. The improved resource 𝜂𝑖
𝑟∗ is given by: 

 𝜂𝑖
𝑟∗ = 𝜂𝑖

𝑟 −min(𝜆𝑟,𝑖, 𝜎𝑟,𝑖) (235) 

After label improvement we have that the new slack variables have the following property 

min(𝜆0,𝑖
∗ , 𝜎0,𝑖

∗ ) = min(𝜆𝑟,𝑖
∗ , 𝜎𝑟,𝑖

∗ ) = 0, 𝑖 ∈ {1,2}. 

Assume that 𝜃2 and 𝜃1 are improved labels, so min(𝜆0,𝑖, 𝜎0,𝑖) = min(𝜆𝑟,𝑖, 𝜎𝑟,𝑖) = 0, 𝑖 ∈ {1,2}. If 

all 𝜆’s are equal to zero, it falls on the previous case where no label improvement is possible by 
updating upstream decisions, now or in the future. However, if that is not the case, it is still 
possible for the remaining slacks to be used in the future if downstream decisions make the 𝜎’s 
increase, e.g., if 𝜃2 was generated by a path with very loose time-windows, it may have large 
𝜆’s; this slack can be used to reduce the amount of unnecessary off-duty time at downstream 
nodes. It is important to note that the usage of this remaining slack is not guaranteed. The 
slacks may be reset or the vehicle may reach the final destination before the 𝜎’s are increased. 
Therefore, the dominance criteria must consider both the case when the slack remains unused 
and when it is fully used. The case when the slacks remain unused is covered by (233). To 
account for the slack usage, the following constraints are included: 

 𝑐1 − 𝑐2 ≤ (𝛼0 − 𝛼𝑟)[𝜆0,2 − 𝜆0,1] (236) 

 𝜂1
𝑟 − 𝜂2

𝑟 ≤ 𝜆𝑟,1 − 𝜆𝑟,2 (237) 

Note that, until the node of reference is changed, the 𝜎’s can only increase, and the 𝜆’s can 
only decrease. So the 𝜆’s give an upper-bound on how much future labels can be improved by 
updating the decision taken at the current reference node. (236) and (237) check if a path 
generated from 𝜃1 will be superior to one from 𝜃2 even if the slacks are fully used. A given path 
will cause the same resource expenditures regardless of the resource vector of the label from 
which it was generated, so the resource variations caused by downstream decisions do not 
show up in (236) and (237). 𝜃1 dominates 𝜃2 if conditions (233), (236) and (237) hold, with at 
least one inequality being strict. These dominance rules are valid for any node, but only for 
improved labels with matching 𝜂0. As label improvement affects path feasibility and it is only 
performed during decisions at rest nodes, the dominance rules for labels that have not been 
improved yet will be treated in the next section, along with labels with different 𝜂0. 

Different time, non-zero slack, before improvement 

Due to the existence of time-window constraints 𝜃1 cannot dominate 𝜃2 if 𝜂1
0 > 𝜂2

0 as some 
time-windows may be impossible to satisfy due to late arrival at downstream nodes. Therefore, 
we assume that 𝛾 = 𝜂2

0 − 𝜂1
0 >= 0. However, as we assume early arrivals are not allowed, 

having 𝜂1
0 < 𝜂2

0 will also cause problems if not treated properly. Therefore, we only allow 𝛾 > 0 
at nodes where this arrival time difference can be corrected by the next decision, i.e., rest 
nodes. The option to extend the duration of rests makes it possible to match the arrival time of 
labels generated by 𝜃1 to the ones generated by 𝜃2. The dominance conditions are derived by 
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studying when every label generated from 𝜃2 through a decision 𝑢2 = (𝑗, 𝛿) is dominated (after 
label improvements) by the label generated from 𝜃1 through the decision 𝑢1 = (𝑗, 𝛿 + 𝛾). Note 
that 𝜃1 and 𝜃2 are not improved labels, we simply calculate the effects that label improvement 
could have on their descendants. Let 𝑉𝑏, 𝑉𝑟 and 𝑉𝑤 represent the set of all break, daily rest and 
weekly rest nodes, respectively. Table 32 summarizes how a decision 𝑢 with duration 𝛿𝑢 taken 
at a rest node affects the resources and slack variables, the second column refers to decisions 
taken at break nodes, whereas the third column refers to decisions taken at daily rest or weekly 
rest nodes. This table differs slightly from Table 22 because it refers specifically to decisions 
taken at rest nodes, and it also includes the slack variables. Note that decisions taken at a rest 
node always lead to the TPL’s exit (node 𝑣𝑖

𝑜𝑢𝑡 in Figure 113a), which does not have time-
window constraints, and that resources requiring resetting are already zero. 

Table 32. Effect of decision with duration 𝜹𝒖 at rest nodes 

Next label info 𝒗 ∈ 𝑽𝒃 𝒗 ∈ 𝑽𝒓 ∪ 𝑽𝒘 

𝜼𝒊
𝟎′ = 𝜂𝑖

0 + 𝛿𝑢 𝜂𝑖
0 + 𝛿𝑢 

𝒄𝒊′ = 𝑐𝑖 + 𝛼𝑟𝛿𝑢 𝑐𝑖 + 𝛼𝑟𝛿𝑢 

𝜼𝒊
𝒃′ = 𝜂𝑖

𝑏 𝜂𝑖
𝑏 

𝜼𝒊
𝒓′ = 𝜂𝑖

𝑟 + 𝛿𝑢 𝜂𝑖
𝑟  

𝝍𝒊
𝒓′ = 𝜓𝑖

𝑟  𝜓𝑖
𝑟  

𝝍𝒊
𝒘′ = 𝜓𝑖

𝑤  𝜓𝑖
𝑤  

𝝀𝒊
𝟎′ = 𝜆0,𝑖 𝜆0,𝑖 

𝝈𝒊
𝟎′ = 𝜎0,𝑖 + 𝛿𝑢 𝜎0,𝑖 + 𝛿𝑢 

𝝀𝒊
𝒓′ = 𝜆𝑟,𝑖 𝜆𝑟,𝑖 

𝝈𝒊
𝒓′ = 𝜎𝑟,𝑖 + 𝛿𝑢 𝜎𝑟,𝑖 

Let the resources with superscript ∗ represent the resources generated after label expansion 
and label improvement, in this order. The label expansion uses the decisions listed previously 
(𝛿𝑢1 = 𝛿 + 𝛾 for 𝜃1 and 𝛿𝑢2 = 𝛿 for 𝜃2). Label improvement effects are described in (234) and 

(235). If the following conditions are satisfied (with at least one inequality being a strict 
inequality) for all values of 𝛿, we can say that 𝜃1 dominates 𝜃2. 

 𝑣 ∈ 𝑉𝑏 ∪ 𝑉𝑟 ∪ 𝑉𝑤 (238) 

 𝜂1
0 + 𝛾 + 𝛿 = 𝜂1

0∗ = 𝜂2
0∗ = 𝜂2

0 + 𝛿 (239) 

 𝜂1
𝑏 = 𝜂1

𝑏∗ ≤ 𝜂2
𝑏∗ = 𝜂2

𝑏 (240) 

 𝜓1
𝑟 = 𝜓1

𝑟∗ ≤ 𝜓2
𝑟∗ = 𝜓2

𝑟  (241) 
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 𝜓1
𝑤 = 𝜓1

𝑤∗ ≤ 𝜓2
𝑤∗ = 𝜓2

𝑤  (242) 

 𝑐1
∗ = 𝑐1 + (𝛼0 − 𝛼𝑟)min(𝜆0,1, 𝜎0,1 + 𝛿 + 𝛾) + 𝛼𝑟(𝛿 + 𝛾) (243) 

 𝑐2
∗ = 𝑐2 + (𝛼0 − 𝛼𝑟)min(𝜆0,2, 𝜎0,2 + 𝛿) + 𝛼𝑟𝛿 (244) 

 𝑐1
∗ ≤ 𝑐2

∗ (245) 

 
𝜂1
𝑟∗ = {

𝜂1
𝑟 −min(𝜆𝑟,1, 𝜎𝑟,1 + 𝛿 + 𝛾) + 𝛿 + 𝛾, if 𝑣 ∈ 𝑉𝑏
0, if 𝑣 ∈ 𝑉𝑟 ∪ 𝑉𝑤

 (246) 

 
𝜂2
𝑟∗ = {

𝜂2
𝑟 −min(𝜆𝑟,2, 𝜎𝑟,2 + 𝛿) + 𝛿, if 𝑣 ∈ 𝑉𝑏
0, if 𝑣 ∈ 𝑉𝑟 ∪ 𝑉𝑤

 (247) 

 𝜂1
𝑟∗ ≤ 𝜂2

𝑟∗ (248) 

 𝑐1 − 𝑐2 ≤ (𝛼0 − 𝛼𝑟)(𝜆0,2 − 𝜆0,1) − 𝛼𝑟𝛾 (249) 

 𝜂1
𝑟 − 𝜆𝑟,1 + 𝛾 ≤ 𝜂2

𝑟 − 𝜆𝑟,2, if 𝑣 ∈ 𝑉𝑏 (250) 

(238) defines that these rules are applicable only to rest nodes. (239) is always satisfied due to 
how 𝛾 is defined. (240) is always satisfied because 𝜂𝑏 is always zero at rest nodes and does not 
change when the rest is extended. (241) and (242) check the conditions on the accumulated 
driving time since the last daily rest and on-duty time since the last weekly rest, respectively. 
These first four conditions are independent of the value of 𝛿, so they can be easily checked 
from 𝜃1 and 𝜃2. Equations (243)-(248) check the conditions on elapsed time since the last daily 
rest (𝜂𝑟) and accumulated cost (𝑐) assuming label improvement will be performed when that 
label is expanded. Conditions (249) and (250) are like (236) and (237) in that they guarantee 
that dominance will still be valid even if remaining slacks are fully used downstream. Note that 
(249) and (250) are generated from (243)-(248) by using the 𝜆’s to bound the effects of future 
label improvements, equivalent to taking a large 𝛿. Conditions (243)-(248) depend on 𝛿, so we 
determine sufficient conditions to guarantee that they hold for every 𝛿. 

Note that, for 𝑣 ∈ 𝑉𝑏, the structure of the conditions on 𝜂𝑟 is the same as the ones on 𝑐. 
Therefore, we only describe how to find sufficient conditions to satisfy (243)-(245). Analogous 
conditions for (246)-(248) can be found by taking 𝛼0 = 0 and 𝛼𝑟 = 1, and by replacing the 
resource and slack variables by the ones relative to 𝜂𝑟. Eqs. (243)-(245) can be rewritten as: 

 𝑐1 ≤ 𝑐2 + (𝛼0 − 𝛼𝑟)[min(𝜆0,2, 𝜎0,2 + 𝛿)

−min(𝜆0,1, 𝜎0,1 + 𝛿 + 𝛾)] − 𝛼𝑟𝛾
 (251) 

The subscripts ‘0’ of the 𝜆’s and 𝜎’s will be omitted for convenience. Furthermore, it is assumed 
that 𝛼0 < 𝛼𝑟. The sufficient conditions are determined by minimizing the right side of (251) 
over all values of 𝛿. 
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Case 1: 𝝀𝟏 ≤ 𝝈𝟏 + 𝜸  ∧ 𝝀𝟐 ≤ 𝝈𝟐 

𝑐1 ≤ 𝑐2 + (𝛼0 − 𝛼𝑟)(𝜆2 − 𝜆1) − 𝛼𝑟𝛾

= 𝑐2 + 𝛼0(𝜆2 − 𝜆1) + 𝛼𝑟(−𝜆2 + 𝜆1 − 𝛾)
 

Case 2: 𝝀𝟏 ≤ 𝝈𝟏 + 𝜸  ∧ 𝝀𝟐 > 𝝈𝟐 

 𝑐1 ≤ 𝑐2 + (𝛼0 − 𝛼𝑟)(min(𝜆2, 𝜎2 + 𝛿) − 𝜆1) − 𝛼𝑟𝛾 (252) 

We determine the minimum of the right side of (252) and use it to determine a sufficient 
condition independent of 𝛿. Note that (𝛼0 − 𝛼𝑟) < 0. 

max
𝛿≥0

(min(𝜆2, 𝜎2 + 𝛿) − 𝜆1) = 𝜆2 − 𝜆1 

∴
𝑐1 ≤ 𝑐2 + (𝛼0 − 𝛼𝑟)(𝜆2 − 𝜆1) − 𝛼𝑟𝛾

= 𝑐2 + 𝛼0(𝜆2 − 𝜆1) + 𝛼𝑟(−𝜆2 + 𝜆1 − 𝛾)

≤ 𝑐2 + (𝛼0 − 𝛼𝑟)(min(𝜆2, 𝜎2 + 𝛿) − 𝜆1) − 𝛼𝑟𝛾

 

Case 3: 𝝀𝟏 > 𝝈𝟏 + 𝜸  ∧ 𝝀𝟐 ≤ 𝝈𝟐 

 𝑐1 ≤ 𝑐2 + (𝛼0 − 𝛼𝑟)(𝜆2 −min(𝜆1, 𝜎1 + 𝛿 + 𝛾)) − 𝛼𝑟𝛾 (253) 

Determine the minimum of the right side of (253). 

max
𝛿≥0

(𝜆2 −min(𝜆1, 𝜎1 + 𝛾 + 𝛿)) = 𝜆2 − 𝜎1 − 𝛾 

∴
𝑐1 ≤ 𝑐2 + (𝛼0 − 𝛼𝑟)(𝜆2 − 𝜎1 − 𝛾) − 𝛼𝑟𝛾

= 𝑐2 + 𝛼0(𝜆2 − 𝜎1 − 𝛾) + 𝛼𝑟(−𝜆2 + 𝜎1)

≤ 𝑐2 + (𝛼0 − 𝛼𝑟)(𝜆2 −min(𝜆1, 𝜎1 + 𝛿 + 𝛾)) − 𝛼𝑟𝛾

 

Case 4: 𝝀𝟏 > 𝝈𝟏 + 𝜸  ∧ 𝝀𝟐 > 𝝈𝟐 

𝑐1 ≤ 𝑐2 +(𝛼0 − 𝛼𝑟)(min(𝜆2, 𝜎2 + 𝛿)

−min(𝜆1, 𝜎1 + 𝛿 + 𝛾)) − 𝛼𝑟𝛾
 

If 𝜆1 − 𝜎1 − 𝛾 < 𝜆2 − 𝜎2, the right side is minimized by a large 𝛿: 

max
𝛿≥0

(min(𝜆2, 𝜎2 + 𝛿) − min(𝜆1, 𝜎1 + 𝛿 + 𝛾)) = 𝜆2 − 𝜆1 

∴
𝑐1 ≤ 𝑐2 + (𝛼0 − 𝛼𝑟)(𝜆2 − 𝜆1) − 𝛼𝑟𝛾

= 𝑐2 + 𝛼0(𝜆2 − 𝜆1) + 𝛼𝑟(−𝜆2 + 𝜆1 − 𝛾)

≤ 𝑐2 +(𝛼0 − 𝛼𝑟)(min(𝜆2, 𝜎2 + 𝛿)

−min(𝜆1, 𝜎1 + 𝛿 + 𝛾)) − 𝛼𝑟𝛾
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If 𝜆1 − 𝜎1 − 𝛾 ≥ 𝜆2 − 𝜎2, the right side is minimized by 𝛿 = 0: 

max
𝛿≥0

(min(𝜆2, 𝜎2 + 𝛿) − min(𝜆1, 𝜎1 + 𝛿 + 𝛾)) = 𝜎2 − 𝜎1 − 𝛾 

∴
𝑐1 ≤ 𝑐2 + (𝛼0 − 𝛼𝑟)(𝜎2 − 𝜎1 − 𝛾) − 𝛼𝑟𝛾

= 𝑐2 + 𝛼0(𝜎2 − 𝜎1 − 𝛾) + 𝛼𝑟(−𝜎2 + 𝜎1)

≤ 𝑐2 +(𝛼0 − 𝛼𝑟)(min(𝜆2, 𝜎2 + 𝛿)

−min(𝜆1, 𝜎1 + 𝛿 + 𝛾)) − 𝛼𝑟𝛾

 

Summary 

Conditions (243)-(248) should be replaced by the following conditions: 

Cost constraint: Given 𝛼0 < 𝛼𝑟. 

If 𝜆0,1 ≤ 𝜎0,1 + 𝛾: 

𝑐1 ≤ 𝑐2 + 𝛼0(𝜆0,2 − 𝜆0,1) + 𝛼𝑟(−𝜆0,2 + 𝜆0,1 − 𝛾) 

If 𝜆0,1 > 𝜎0,1 + 𝛾  ∧ 𝜆0,2 ≤ 𝜎0,2: 

𝑐1 ≤ 𝑐2 + 𝛼0(𝜆0,2 − 𝜎0,1 − 𝛾) + 𝛼𝑟(−𝜆0,2 + 𝜎0,1) 

If 𝜆0,1 > 𝜎0,1 + 𝛾  ∧ 𝜆0,2 > 𝜎0,2: 

𝑐1 ≤ 𝑐2 +𝛼0(𝜎0,2 − 𝜎0,1 − 𝛾) + 𝛼𝑟(−𝜎0,2 + 𝜎0,1)

∧
𝑐1 ≤ 𝑐2 +𝛼0(𝜆0,2 − 𝜆0,1) + 𝛼𝑟(−𝜆0,2 + 𝜆0,1 − 𝛾)

 

𝜼𝒓 constraint, for 𝒗 ∈ 𝑽𝒃: 

If 𝜆𝑟,1 ≤ 𝜎𝑟,1 + 𝛾: 

𝜂1
𝑟 ≤ 𝜂2

𝑟 − 𝜆𝑟,2 + 𝜆𝑟,1 − 𝛾 

If 𝜆𝑟,1 > 𝜎𝑟,1 + 𝛾  ∧ 𝜆𝑟,2 ≤ 𝜎𝑟,2: 

𝜂1
𝑟 ≤ 𝜂2

𝑟 − 𝜆𝑟,2 + 𝜎𝑟,1 

If 𝜆𝑟,1 > 𝜎𝑟,1 + 𝛾  ∧ 𝜆𝑟,2 > 𝜎𝑟,2: 

𝜂1
𝑟 ≤ 𝜂2

𝑟 −𝜎𝑟,2 + 𝜎𝑟,1
∧

𝜂1
𝑟 ≤ 𝜂2

𝑟 −𝜆𝑟,2 + 𝜆𝑟,1 − 𝛾
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Appendix K: Optimality Proof 

Definition 1: We use the term ‘Restricted Problem’ to refer to a sub-problem that considers a 
single path over the extended network 𝑮′ = (𝑽′, 𝑨′) and a single time-window at each location, 
without modifying the HOS constraints. Let 𝒗𝟎 and 𝒗𝒏 represent, respectively, the origin and 

destination nodes. Let ⋃ [𝒕𝒗𝒋𝝉
𝒎𝒊𝒏, 𝒕𝒗𝒋𝝉

𝒎𝒂𝒙]
𝑻𝒗𝒋
𝝉=𝟏

 represent the set of time-windows for node 𝒗𝒋, where 

𝑻𝒗𝒋  is the number of disjoint time-windows at node 𝒗𝒋. 

An instance of the restricted problem is defined by a path 𝑝 = (𝑣0, 𝑣1, ⋯ , 𝑣𝑛) such that 

(𝑣𝑖, 𝑣𝑖+1) ∈ 𝐴′ for all 𝑖 = 0,⋯ , 𝑛 − 1, and, for each location 𝑣𝑗  in 𝑝, a time-window [𝑎𝑗, 𝑏𝑗] =

[𝑡𝑣𝑗𝜏
𝑚𝑖𝑛, 𝑡𝑣𝑗𝜏

𝑚𝑎𝑥] , 𝜏 ∈ {1,⋯ , 𝑇𝑣𝑗}. For nodes without time-windows, consider [𝑎𝑗 , 𝑏𝑗] = (−∞,+∞). 

The HOS constraints remain the same as in the original problem. 

Definition 2: Let 𝜽𝒌 = (𝜼𝒌
𝟎, 𝒄𝒌, 𝜼𝒌

𝒃, 𝜼𝒌
𝒓 , 𝝍𝒌

𝒓 , 𝝍𝒌
𝒘) be the resource vector defined in the section 

System Equations. Let (𝝈𝒊,𝒌, 𝝀𝒊,𝒌), 𝒊 ∈ {𝟎, 𝒓} be the slack vectors defined in the section Label 

Improvement, where 𝒓 is the index of the last daily or weekly rest node visited. The extended 
state vector is described by the current location, the resource vector and the slack vector, i.e., 

𝒙𝒌 = (𝒗𝒌, 𝜼𝒌
𝟎, 𝒄𝒌, 𝜼𝒌

𝒃, 𝜼𝒌
𝒓 , 𝝍𝒌

𝒓 , 𝝍𝒌
𝒘, 𝝈𝟎,𝒌, 𝝀𝟎,𝒌, 𝝈𝒓,𝒌, 𝝀𝒓,𝒌). 

Definition 3: A solution to the original problem is composed of a path and a schedule. It can be 
uniquely described by a vector of extended states 𝐱 = (𝒙𝟎, 𝒙𝟏, ⋯ , 𝒙𝒊), or by a triplet of initial 
state 𝒙𝟎, path and decisions vector (𝒙𝟎, 𝐩𝐢, 𝛅), where 𝐩𝐢 = (𝒗𝟎, 𝒗𝟏, ⋯ , 𝒗𝒊) and 𝛅 =
(𝜹𝟎, 𝜹𝟏, ⋯ , 𝜹𝒊−𝟏). When considering a restricted problem, as 𝐩𝐢 is given, (𝒙𝟎, 𝛅) is enough to 
represent a schedule, and, consequently, a solution. 

Definition 4: Consider a restricted problem with path 𝒑 = (𝒗𝟎, ⋯ , 𝒗𝒆, ⋯ , 𝒗𝒏) and time-windows 
{[𝒂𝒊, 𝒃𝒊]}, 𝒊 = 𝟏,⋯ , 𝒏. Let 𝑫𝒍(𝒊, 𝒆), 𝑫𝒅(𝒋, 𝒆), 𝑫𝒔(𝒋, 𝒆) and 𝑫𝒎(𝒋, 𝒆) be, respectively, the length, 
driving time, service time and the mandatory off-duty time between nodes 𝒗𝒋 and 𝒗𝒆. Let 𝑽𝒃, 𝑽𝒓 

and 𝑽𝒘 represent the set of all break, daily rest and weekly rest nodes, respectively. Let 𝑵𝒅 =
𝑽𝒃 ∪ 𝑽𝒓 ∪ 𝑽𝒘 ∪ {𝒗𝟎} be the set of locations with controllable duration decisions, i.e., origin and 
rest nodes. Let 𝒃𝒓 = 𝐦𝐚𝐱{𝒊|𝒊 ≤ 𝒆, 𝒊 ∈ 𝑵𝒅} be the index of the last rest node, 𝒓 = 𝐦𝐚𝐱{𝒊|𝒊 ≤
𝒆, 𝒊 ∈ 𝑵𝒅 ∖ 𝑽𝒃} the index of the last daily or weekly rest node, and 𝒘 = 𝐦𝐚𝐱{𝒊|𝒊 ≤ 𝒆, 𝒊 ∈ 𝑽𝒘} 
the index of the last weekly rest node. 

Assuming zero initial conditions, given the partial decision vector (𝛿0, 𝛿1, ⋯ , 𝛿𝑒−1) for a partial 
schedule ending at node 𝑣𝑒, the resource vector 𝜃𝑒 and its constraints can be written as:  

 𝑎𝑒 ≤ η𝑒
0 = δ0 + 𝐷𝑑(1, 𝑒) + 𝐷𝑠(1, 𝑒) + 𝐷𝑚(1, 𝑒) + ∑ δ𝑘

𝑘∈[1,𝑒−1],   𝑣𝑘∈𝑁𝑑

≤ 𝑏𝑒 (254) 
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 𝑐𝑒 = α0δ0 + β𝑑𝐷𝑙(1, 𝑒) + α𝑑𝐷𝑑(1, 𝑒) + α𝑠𝐷𝑠(1, 𝑒)

+ α𝑟 (𝐷𝑚(1, 𝑒) + ∑ 𝛿𝑘
𝑘∈[1,𝑒−1],   𝑣𝑘∈𝑁𝑑

) 
(255) 

 η𝑒
𝑟 = 𝐷𝑑(𝑟, 𝑒) + 𝐷𝑠(𝑟, 𝑒) + 𝐷𝑚(𝑟, 𝑒) + ∑ 𝛿𝑘

𝑘∈[𝑟+1,𝑒−1],   𝑣𝑘∈𝑁𝑑

≤ 𝑡𝑒𝑟 (256) 

 𝜂𝑒
𝑏 = 𝐷𝑑(𝑏𝑟, 𝑒) + 𝐷𝑠(𝑏𝑟, 𝑒) ≤ 𝑡

𝑒𝑏 (257) 

 𝜓𝑒
𝑟′ = 𝐷𝑑(𝑟, 𝑒) ≤ 𝑡

𝑎𝑟  (258) 

 𝜓𝑒
𝑤′ = 𝐷𝑑(𝑤, 𝑒) + 𝐷𝑠(𝑤, 𝑒) ≤ 𝑡

𝑎𝑤  (259) 

Let 𝐶(𝑖, 𝑗) and 𝐷(𝑖, 𝑗) represent, respectively, the fixed part of the cost and trip duration 
between nodes 𝑣𝑖  and 𝑣𝑗 . We can rewrite (254),(255) and (256) as:  

𝑎𝑒 ≤ 𝜂𝑒
0 = 𝐷(0, 𝑒) + ∑ 𝛿𝑘

𝑘∈[0,𝑒−1]
𝑣𝑘∈𝑁𝑑

≤ 𝑏𝑒

𝑐𝑒 = 𝐶(0, 𝑒) + 𝛼0𝛿0 + 𝛼𝑟 ∑ 𝛿𝑘
𝑘∈[1,𝑒−1]
𝑣𝑘∈𝑁𝑑

𝜂𝑒
𝑟 = 𝐷(𝑟, 𝑒) + ∑ 𝛿𝑘

𝑘∈[0,𝑒−1]
𝑣𝑘∈𝑁𝑑

≤ 𝑡𝑒𝑟

 

Lemma 1: Consider the two representations of a partial solution: 𝐱 = (𝒙𝟎, 𝒙𝟏, ⋯ , 𝒙𝒆), and 
(𝒙𝟎, 𝐩𝐞, 𝛅), where 𝐩𝐞 = (𝒗𝟎, 𝒗𝟏, ⋯ , 𝒗𝒆) and 𝛅 = (𝜹𝟎, 𝜹𝟏, ⋯ , 𝜹𝒆−𝟏). We have that, for every 𝟎 ≤
𝒊 ≤ 𝒋 ≤ 𝒆: 𝝈𝒊,𝒋 = 𝟎 ↔ ∑ 𝜹𝒌𝒌∈[𝒊+𝟏,𝒋−𝟏]

𝒗𝒌∈𝑵𝒅

= 𝟎 

Proof. Follows from the definition of 𝜎𝑖,𝑗, (106) . ◻ 

Corollary 1: Let 𝐱 = (𝒙𝟎, 𝒙𝟏, ⋯ , 𝒙𝒏) be a solution for an instance of a restricted problem. If 
𝝈𝟎,𝒏 = 𝟎, then the solution 𝐱 has minimum trip duration for that restricted problem. 

Lemma 2: Consider a restricted problem with path 𝐩 and time-windows {[𝒂𝒊, 𝒃𝒊]}, 𝒊 = 𝟏,⋯ , 𝒏. 
Consider the two representations of a partial solution: 𝐱 = (𝒙𝟎, 𝒙𝟏, ⋯ , 𝒙𝒆), and (𝒙𝟎, 𝛅), where 
𝛅 = (𝜹𝟎, 𝜹𝟏, ⋯ , 𝜹𝒆−𝟏). We have that, for every 𝟎 ≤ 𝒊 ≤ 𝒋 ≤ 𝒆 ≤ 𝒏: 𝝀𝒊,𝒋 = 𝟎 ↔ ∃𝒌 ∈

[𝒊 + 𝟏, 𝒋], 𝜼𝒌
𝟎 = 𝒃𝒌 and 𝝈𝒊,𝒌 = 𝟎 

Proof. Follows from the definition of 𝜆𝑖,𝑗, (107). 𝜆𝑖,𝑖+1 is set to ∞ or 𝑏𝑖+1 − 𝜂𝑖+1
0 + 𝜎𝑖,𝑖+1 at node 

𝑣𝑖+1, and, at every node 𝑣𝑘, 𝑖 < 𝑘 ≤ 𝑗, 𝜆𝑖,𝑘 is set to min(𝜆𝑖,𝑘−1, 𝑏𝑘 − 𝜂𝑘
0 + 𝜎𝑖,𝑘). So, if 𝜆𝑖,𝑗 = 0, 



 330 

then 𝑏𝑘 − 𝜂𝑘
0 + 𝜎𝑖,𝑘 must be zero for at least one node 𝑣𝑘, 𝑖 < 𝑘 ≤ 𝑗. This can only happen if 

𝜂𝑘
0 = 𝑏𝑘 and 𝜎𝑖,𝑘 = 0. ◻ 

Proposition 1: Consider a restricted problem with path 𝐩 and time-windows {[𝒂𝒊, 𝒃𝒊]}, 𝒊 =
𝟏,⋯ , 𝒏. The state vector (𝒙𝟎, 𝒙𝟏, ⋯ , 𝒙𝒆) and decision vector (𝜹𝟎, 𝜹𝟏, ⋯ , 𝜹𝒆−𝟏) representing the 
partial schedule found at the end of each iteration have the following properties: 

h) min(𝜎0,𝑖, 𝜆0,𝑖) = 0, ∀1 ≤ 𝑖 ≤ 𝑒 

i) min(𝜎𝑟,𝑖, 𝜆𝑟,𝑖) = 0, ∀1 ≤ 𝑖 ≤ 𝑒,  𝑟 = max{𝑘|𝑘 ≤ 𝑖, 𝑣𝑘 ∈ 𝑉𝑟 ∪ 𝑉𝑤 ∪ {𝑣0}}. 

j) (𝛿𝑖 > 0 → ∃𝑗 > 𝑖,  𝜂𝑗
0 = 𝑎𝑗 and ∃𝑙 < 𝑖,  𝜂𝑙

0 = 𝑏𝑙), ∀1 ≤ 𝑖 ≤ 𝑒, 𝑣𝑖 ∈ 𝑁𝑑. 

k) 𝛿0 > 0 → ∃𝑗 > 0,  𝜂𝑗
0 = 𝑎𝑗. 

[Note that in (c) and (d), if 𝑗 > 𝑒, 𝜂𝑗
0 is the earliest possible arrival time at 𝑣𝑗  given the current 

partial schedule, i.e., 𝜂𝑗
0 = 𝜂𝑒

0 +𝐷(𝑒, 𝑗).] 

Proof. Proposition 1a follows from the label improvement performed when labels for TPLs’ exits 
are generated. Only rest extension decisions can increase the 𝜎’s, whereas the 𝜆’s can only 
decrease. So, if the slack is removed at a TPL’s exit node, it cannot increase until the next TPL 
exit is visited. As the label improvement is performed at every TPL exit, the slack is always zero. 
The same reasoning applies to Proposition 1b. Proposition 1c follows from the heuristic used to 
choose the decisions to test and the effects of label improvement. The chosen rest extension is 
the smallest duration required to satisfy downstream time-windows, however, if this value 
would generate a slack in the schedule, the label improvement procedure updates the schedule 
to remove this slack. Therefore, if the rest extension is greater than zero even after the label 
improvement, it means that both 𝜆’s are zero, and, by Lemma 2, there is an upstream node 𝑣𝑙  

with 𝜂𝑙
0 = 𝑏𝑙. Furthermore, as 𝛿𝑖 is the smallest value that satisfies downstream time-windows, 

then at least one downstream location 𝑣𝑗  must have 𝜂𝑗
0 = 𝑎𝑗, otherwise 𝛿𝑖 could be reduced. 

The same reasoning applies to Proposition 1d. ◻ 

Proposition 2: If a feasible schedule exists, the algorithm finds a schedule with minimum trip 
duration for the restricted problem (fixed path, single time-windows). 

Proof. At the last iteration we have that, by Proposition 1a, min(𝜎0,𝑛, 𝜆0,𝑛) = 0. If 𝜎0,𝑛 = 0 then 

the schedule has no nonmandatory off-duty time, and the schedule has minimum trip duration. 
If 𝜎0,𝑛 > 0, then at least one nonmandatory off-duty time is nonzero. Let 𝑖 = max{𝑘|𝛿𝑘 > 0}. 

By , we have that ∃𝑗 > 𝑖,  𝜂𝑗
0 = 𝑎𝑗, and that min(𝜎0,𝑗 , 𝜆0,𝑗) = 0. As 𝛿𝑖 > 0, we have that 𝜎0,𝑗 >

0 and 𝜆0,𝑗 = 0. This implies that 𝛿0 and 𝜂1
0 cannot be increased due to time-window constraints 

between nodes 𝑣0 and 𝑣𝑗 . As 𝜂1
0 cannot be increased and 𝜂𝑗

0 cannot be decreased, the trip 

duration at 𝑣𝑗 , given by 𝜂𝑗
0 − 𝜂1

0, is optimal. If 𝑗 = 𝑛, then the trip duration is optimal. If 𝑗 < 𝑛, 

we have that, by the definition of 𝑖, 𝛿𝑘 = 0 for all 𝑘 ∈ [𝑖 + 1, 𝑛 − 1]. As no nonmandatory off-

duty time is included between 𝑣𝑗  and 𝑣𝑛, the trip duration at 𝑣𝑛 is also optimal. ◻ 
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Proposition 3: If a feasible schedule exists, the algorithm finds a minimum cost schedule for the 
restricted problem (fixed path, single time-windows). 

Proof. From proposition Proposition 2 we have that 𝜂𝑛
0 − 𝜂1

0 is minimum, and, consequently, 
∑ 𝛿𝑘𝑘∈[1,𝑛−1]  is also minimum. From Proposition 1, we have that, if 𝛿0 > 0 then ∃𝑗 > 0,  𝜂𝑗

0 =

𝑎𝑗, and 𝛿0 cannot be decreased without increasing ∑ 𝛿𝑘𝑘∈[1,𝑗−1] . However, as 𝛼0 < 𝛼𝑟, 

decreasing 𝛿0 by increasing the other 𝛿’s would only increase costs. Therefore, the solution has 

minimum cost. ◻ 

Proposition 4: If a solution exists, the algorithm finds a minimum cost solution (path and 
schedule) for the unrestricted problem. 

Proof. As described in the section Expansion Criteria, when expanding a label, the label 
correcting algorithm explores every outgoing edge that can generate a feasible solution. 
Therefore, all paths are considered by the algorithm. In addition, at every decision with a 
controllable time duration, the algorithm tests the minimum values able to satisfy each time-
window of each reachable downstream location, such that all possible time-window usages are 
accounted for. Each combination of path and time-windows used represents an instance of the 
restricted problem. The algorithm discards partial paths and schedules that are infeasible, 
dominated or unable to improve the current upper-bound (A*). Therefore, not all instances of 
the restricted problem are explicitly generated. However, if the dominance rules and the 
estimate used by the A* method are correctly defined and do not discard good solutions, then 
if a solution exists the restricted problem instance containing the optimal solution (or a solution 
within the chosen tolerance) is guaranteed to be generated. 

Proposition 3 states that the algorithm finds a feasible solution for the restricted problem if one 
exists. As the algorithm explores all restricted problem instances that might contain the optimal 
solution, then the optimal solution to the original problem is found by choosing the best 

solution among restricted problems’ optimal solutions. ◻  
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Appendix L: Label Improvement Pseudocode 

Function updatePath takes a partial solution given by ((𝑥𝑗)0≤𝑗≤𝑘;  (𝛿𝑗)0≤𝑗<𝑘), increases the 

decision at node 𝑣𝑖  by ℎ, then updates the rest of the partial solution, returning a new one. As 
described in the section Label Improvement, the new partial solution follows the same path as 
the original one, and each decision with controllable duration takes the smallest value that will 
not decrease the arrival time (𝜂0) at the following node. We assume that 𝑣𝑗 ∈ 𝑁𝑑 can be easily 

verified. 

 

Function expand takes a label’s information (partial solution, slack variables and last 

daily/weekly rest node), along with the set of decisions to be tested (�̂�(�̃�𝑖) as defined in the 
section Expansion Criteria) and generates new partial solutions/labels, performing label 
improvement when necessary. Note that, as described in the section Expansion Criteria, if the 

current label does not require a time duration decision, all decisions are tested, i.e., �̂�(�̃�𝑖) =
𝑈(𝑥𝑖). Lines 1-6 expand labels that do not require time duration decisions. We assume that 
𝑣𝑖 ∉ 𝑁𝑑 can be easily verified. Line 9 calculates by how much the departure time from the 
origin should be delayed to arrive at the next node at the desired time without slacks relative to 
the origin. Lines 10-16 generate an updated partial solution with the new departure time. Lines 
17 and 23 recalculate the duration of the decision required to reach the next node at the 
desired time accounting for the updates performed. Lines 18-22 do the same as lines 9-16 but 
with regards to the last daily/weekly rest node instead of the origin node. Lines 24-26 use the 
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updated path and decision to calculate the next state and generate the label for the expanded 
partial solution, which is then inserted into OPEN. For simplicity, we consider that any 
necessary checks, such as A* bound conditions and dominance rules, are included in the 
process of creating a label and inserting it into OPEN. 
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Appendix M: Path Choice 

The choice of paths between clients to consider in the problem can affect both computational 
effort and solution quality. In this experiment, we analyze the effects of a simple heuristic that 
can be used to define these paths. It is important to note that trucks already face a number of 
restrictions regarding which roads they can use, such as weight and size limits. Therefore, 
before anything else, restricted roads need not be considered. As we are dealing with long-haul 
trucking, the focus is on large highways as opposed to small local streets. The networks used in 
this experiment have only a single client and are organized in layers, as the networks generated 
for Section Randomized Networks Experiments. The parameters were set so that the networks 
generated represent trips where, before the branches linking to TPLs are added, the shortest 
routes have around 40-44 hours of driving time and thousands of paths are available. 

The heuristic used to reduce the networks in this experiment is the following: 

l) Estimate a trip duration upper bound (𝑢𝑡) if one is not known. 

1. Before including the TPLs, calculate the shortest path to the destination. 

2. Remove all edges that are not part of the shortest path. 

3. Include the TPLs in the remaining edges. 

4. Solve several instances of this problem and take the worst trip duration as an 
approximate upper bound. 

m) Estimate a driving time upper bound (𝑢𝑑) based on 𝑢𝑡. 

1. Appendix I presented a method that, given a driving time 𝑥, calculates a lower 
bound ℒ𝑙(𝑥) (defined in (231)) for the trip duration when only HOS rules are 
considered. That method can be used to find the largest driving time that 
generates a lower bound smaller or equal to 𝑢𝑡, i.e., 𝑢𝑑 = sup({𝑥|ℒ𝑙(𝑥) ≤ 𝑢𝑡}). 

n) Calculate the k shortest paths with driving time not exceeding the driving time upper 
bound 𝑢𝑑. 

o) Remove all edges not present in any of the k paths calculated previously. 

p) Include the TPLs on the remaining edges. 

Note that all paths generated by the remaining edges will be considered during execution, even 
if they are not among the k shortest paths. Step 3 could simply take the k shortest paths 
without restricting their drive time, allowing steps 1 and 2 to be skipped. On the other hand, 
step 1 can use a larger number of paths to get a tighter bound. 

These experiments were run on a different computer from the ones in the section Randomized 
Networks Experiments, and the networks used are also different, so the running times are not 
directly comparable. The intent is to study the path choice’s impact on running time and 
solution quality. Figure 147, Figure 148, Figure 149 show, for 4 different networks, the trip 
duration, running time and driving time when the edges included in the network are chosen 
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using the previous heuristic with 𝑘 equal to 1, 5, 10, 50, 100, 500 and 1000. It can be seen that, 
except for network 0, the improvements in trip duration stop when more than 50 paths are 
considered. So, in the networks tested, it would be reasonable to assume that stopping at 𝑘 
equals 50 would provide a good balance between solution quality and running time. Naturally, 
this behavior depends on the characteristics of the networks in question. Similar experiments 
should be performed on the network of interest to define the appropriate number of paths to 
be used according to the user’s sensitivity to solution quality and running time. For example, 
the running time increases with the number of paths considered for most networks in Figure 
148. However, for network 1, it actually decreased when going from 10 to 50 paths. For the 
other networks, users need to consider whether the expected cost decrease is worth the 
running time increase, but for network 1, there is no reason to use only 5 or 10 paths, instead 
of 50. In this case, as can be seen from the cost drop in Figure 147, it is likely that one or more 
edges not part of the 10 shortest paths had convenient parking locations that allowed 
significantly more efficient solutions. The drop in running time seen in Figure 148 is likely due to 
the new optimal solutions being able to dominate other solutions faster than before. User 
knowledge can also be used to supplement the heuristic. Roads deemed promising by the user 
can be included regardless of being part of the k shortest paths. 

When considering multi-client trips, a possible approach is to perform this heuristic for each 
pair of consecutive clients with some small adjustments. If the trip leg always starts with all HOS 
counters set to zero, the trip durations found will be too optimistic as they do not take into 
account resources spent in previous trip legs. In this case, as these bounds depend on the time 
and HOS counters at the trip leg’s start, it makes more sense to skip the calculation of trip 
duration and driving time upper bounds, and just take the k shortest paths. Another option 
would be to randomize the HOS resources and time at the start of the trip leg, calculate the 
driving time upper bound for each case accounting for the initial conditions (method from 
Appendix I can be used), then choose the driving time upper bound from among these case-
specific ones. 

 

Figure 147. Trip duration, in hours, when only the edges of the k shortest paths are included 
in the networks. 
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Figure 148. Running time, in seconds, when only the edges of the k shortest paths are 
included in the networks. 

 

Figure 149. Solution’s driving time, in hours, when only the edges of the k shortest paths are 
included in the networks. 
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